Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2229-2232, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691686

RESUMO

In this Letter, the CH3NH3PbBr3 nanocrystals (NCs) are embedded into the interstices of the fluorine (polyvinyl fluoride/polyvinylidene fluoride, PVF/PVDF) matrix on polyethylene terephthalate (PET) substrate to introduce new advantages, such as being flexible and waterproof, while maintaining the high optical performance of perovskites. The sample's photoluminescence (PL) spectra under 325 nm laser is a green emission peaked at 537 nm with full width at half maximum (FWHM) of about 21.2 nm and a fast PL decay time. As a color converter, it shows high optical absorption and can transform light from solar-blind ultraviolet to a blue region into a green region in air, water, and bending conditions. While excited by a 270 nm ultraviolet light-emitting diode (LED), the system's observed -3 dB bandwidth with the color converter is near 4.4 MHz in air and water conditions with well-eye diagrams at a data rate of 30 Mbps. Finally, we demonstrate an audio transmission application with an ultraviolet light source, a color conversion layer, and a low-cost silicon-based photodetector.

2.
Adv Mater ; : e2403371, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702927

RESUMO

Calcium-ion batteries (CIBs) have emerged as a promising alternative for electrochemical energy storage. The lack of high-performance cathode materials severely limits the development of CIBs. Vanadium oxides are particularly attractive as cathode materials for CIBs, and preinsertion chemistry is often used to improve their calcium storage performance. However, the room temperature cycling lifespan of vanadium oxides in organic electrolytes still falls short of 1000 cycles. Here, based on preinsertion chemistry, the cycling life of vanadium oxides is further improved by integrated electrode and electrolyte engineering. Utilizing a tailored Ca electrolyte, the constructed freestanding (NH4)2V6O16·1.35H2O@graphene oxide@carbon nanotube (NHVO-H@GO@CNT) composite cathode achieves a 305 mAh g-1 high capacity and 10 000 cycles record-long life. Additionally, for the first time, a Ca-ion hybrid capacitor full cell is assembled and delivers a capacity of 62.8 mAh g-1. The calcium storage mechanism of NHVO-H@GO@CNT based on a two-phase reaction and the exchange of NH4 + and Ca2+ during cycling are revealed. The lattice self-regulation of V─O layers is observed and the layered vanadium oxides with Ca2+ pillars formed by ion exchange exhibit higher capacity. This work provides novel strategies to enhance the calcium storage performance of vanadium oxides via integrated structural design of electrodes and electrolyte modification.

3.
Angew Chem Int Ed Engl ; : e202406292, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780997

RESUMO

Aqueous Zn-ion batteries are an attractive electrochemical energy storage solution for their budget and safe properties. However, dendrites and uncontrolled side reactions in anodes detract the cycle life and energy density of the batteries.Grain boundaries in metals are generally considered as the source of the above problems but we present a diverse result. This study introduces an ultra-high proportion of grain boundaries on zinc electrodes through femtosecond laser bombardment to enhance stability of zinc metal/electrolyte interface.The ultra-high proportion of grain boundaries promotes the homogenization of zinc growth potential, to achieve uniform nucleation and growth, thereby suppressing dendrite formation. Additionally, the abundant active sites mitigate the side reactions during the electrochemical process. Consequently, the 15-µm-Fs-Zn||MnO2 pouch cell achieves an energy density of 249.4 Wh kg-1 and  operates for over 60 cycles at a depth-of-discharge of 23%. The recognition of the favorable influence exerted by UP-GBs paves a new way for other metal batteries.

4.
Angew Chem Int Ed Engl ; 63(21): e202401987, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38526053

RESUMO

The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)2-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)6.xH2O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO4 2- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm-2~30 mAh cm-2). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.

6.
Basic Clin Pharmacol Toxicol ; 134(4): 498-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379124

RESUMO

Psoriasis is a chronic inflammatory skin disease. Topical medicines are the preferred treatment for mild to moderate psoriasis, but the effect of excipients used in semi-solid preparations on psoriasis-like skin inflammation is not fully understood. In the present study, we investigated the effect of stearyl alcohol, a commonly used excipient, on imiquimod (IMQ)-induced psoriasis-like skin inflammation in mice. Psoriasis-like skin inflammation was induced by topical IMQ treatment on the back of mice. Skin lesion severity was evaluated by using psoriasis area and severity index (PASI) scores. The skin sections were stained by haematoxylin-eosin and immunohistochemistry. Stearyl alcohol (20% in vaseline) treatment significantly reduced the IMQ-induced increase of PASI scores and epidermal thickness in mice. IMQ treatment increased the number of Ki67- and proliferating cell nuclear antigen (PCNA)-positive cells in the skin, and the increases were inhibited by stearyl alcohol (20% in vaseline) treatment. Stearyl alcohol treatment (1%, 5%, 10% in vaseline) dose-dependently ameliorated IMQ-induced increase of PASI scores and epidermal thickness in mice. Hexadecanol (20% in vaseline), stearic acid (20% in vaseline) and vaseline treatment had no significant effect on IMQ-induced psoriasis-like skin inflammation in mice. In conclusion, stearyl alcohol has the effect of improving IMQ-induced psoriasis-like skin inflammation in mice.


Assuntos
Dermatite , Álcoois Graxos , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Dermatite/patologia , Pele , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Vaselina/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
7.
Adv Mater ; 36(14): e2310645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226766

RESUMO

Aqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50-100 cycles due to intensified cathode dissolution. This genuine limitation poses a considerable challenge to their transition from the laboratory to the industry. In this study, leveraging density functional theory (DFT) calculations, an artificial interphase that achieves both hydrophobicity and restriction of the outward penetration of dissolved vanadium cations, thereby shifting the reaction equilibrium and suppressing the vanadium dissolution following Le Chatelier's principle, is described. The approach has resulted in one of the best cycling stabilities to date, with no noticeable capacity fading after more than 200 cycles (≈720 h) at 200 mA g-1 (0.47C). These findings represent a significant advance in the design of ultrastable cathodes for aqueous batteries and accelerate the industrialization of aqueous zinc-ion batteries.

8.
Front Oncol ; 13: 1274340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901319

RESUMO

Introduction: Breast cancer is the most common malignancy among women. Previous studies had shown that hepatitis C virus (HCV) infection might serve as a risk factor for breast cancer, while some studies failed to find such an association. Methods: In this study, we presented a first attempt to capture and clarify this clinical debate via a cumulative analysis (registration ID: CRD42023445888). Results: After systematically searching and excluding the irrelevant publications, five case-control or cohort studies were finally included. The synthetic effect from the eligible studies showed that patients with HCV infection had a significantly higher prevalence of breast cancer than non-HCV infected general population (combined HR= 1.382, 95%CI: 1.129 to 1.692, P=0.002). There was no evidence of statistical heterogeneity during this pooled analysis (I2 = 13.2%, P=0.33). The sensitivity analyses confirmed the above findings. No significant publication bias was observed among the included studies. The underlying pathophysiological mechanisms for this relationship might be associated with persistent infection/inflammation, host immune response, and the modulation of HCV-associated gene expression. Discussion: Though the causal association between HCV infection and breast cancer did not seem quite as strong, screening for HCV might enable the early detection of breast cancer and help to prevent the progression of the disease. Since the topic of this study remains a matter of clinical debate, further studies are still warranted to validate this potential association. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023445888.

9.
Heliyon ; 9(10): e20918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867821

RESUMO

Government-guided withdrawal from rural homesteads is a sustainable solution to the problem of vacant rural residential land. Nonetheless, few studies have considered the influence of risk perception and loss aversion on farmers' decisions to withdraw from rural homesteads, and even fewer have investigated the role of policy identity. Using fieldwork-collected primary data and a lottery-choice experiment from a reform pilot area of southwestern China, this study aimed to provide a new focus for risk perception and loss aversion in farmers' intention to withdraw from rural homesteads through policy identity. According to our findings, only 45.30 % are willing to withdraw from their homesteads. Farmers typically perceive two to three categories of risks among residence risk, livelihood risk, security risk, and policy risk. Only 29.28 % of respondents report a low level of loss aversion, with the remainder reporting a moderate or high level. More than half demonstrate a high level of policy identity. Most notably, after dealing with endogeneity, risk perception has a negative impact on farmers' intention to withdraw from rural homesteads, whereas loss aversion has a positive impact. Policy identity has a positive influence on farmers' intention, partially mediating the negative path of risk perception and entirely mediating the positive path of loss aversion. Robust concluding remarks advocate for the improvement of farmers' policy identity based on heterogeneous characteristics of risk perception and loss aversion, as well as a more individualized consideration of land withdrawal options.

10.
Chem Sci ; 14(32): 8662-8671, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592989

RESUMO

High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a "Mn-locking" effect-to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes.

11.
Angew Chem Int Ed Engl ; 62(41): e202311268, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615518

RESUMO

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm2 ).

12.
Nat Commun ; 14(1): 4670, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537180

RESUMO

Electrochemical conversion of CO2 to formic acid using Bismuth catalysts is one the most promising pathways for industrialization. However, it is still difficult to achieve high formic acid production at wide voltage intervals and industrial current densities because the Bi catalysts are often poisoned by oxygenated species. Herein, we report a Bi3S2 nanowire-ascorbic acid hybrid catalyst that simultaneously improves formic acid selectivity, activity, and stability at high applied voltages. Specifically, a more than 95% faraday efficiency was achieved for the formate formation over a wide potential range above 1.0 V and at ampere-level current densities. The observed excellent catalytic performance was attributable to a unique reconstruction mechanism to form more defective sites while the ascorbic acid layer further stabilized the defective sites by trapping the poisoning hydroxyl groups. When used in an all-solid-state reactor system, the newly developed catalyst achieved efficient production of pure formic acid over 120 hours at 50 mA cm-2 (200 mA cell current).

13.
Nat Commun ; 14(1): 3532, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316489

RESUMO

Liquid metal (LM) has gained increasing attention for a wide range of applications, such as flexible electronics, soft robots, and chip cooling devices, owing to its low melting temperature, good flexibility, and high electrical and thermal conductivity. In ambient conditions, LM is susceptible to the coverage of a thin oxide layer, resulting in unwanted adhesion with underlying substrates that undercuts its originally high mobility. Here, we discover an unusual phenomenon characterized by the complete rebound of LM droplets from the water layer with negligible adhesion. More counterintuitively, the restitution coefficient, defined as the ratio between the droplet velocities after and before impact, increases with water layer thickness. We reveal that the complete rebound of LM droplets originates from the trapping of a thinly low-viscosity water lubrication film that prevents droplet-solid contact with low viscous dissipation, and the restitution coefficient is modulated by the negative capillary pressure in the lubrication film as a result of the spontaneous spreading of water on the LM droplet. Our findings advance the fundamental understanding of complex fluids' droplet dynamics and provide insights for fluid control.

14.
Sci Total Environ ; 892: 164748, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308018

RESUMO

Bisphenol P (BPP) and bisphenol M (BPM) are increasing in our living environment as analogues of bisphenol A (BPA), but little is known about their biological effect. In this study, we investigated the effects of low to medium dose exposure of BPP and BPM on triple negative breast cancer (TNBC). We found that BPP and BPM exposure didn't affect proliferation of TNBC cell lines MDA-MB-231 and 4 T1, but significantly promoted cells migration and invasion. The effect of BPP and BPM on promoting TNBC metastasis was further confirmed in mouse models. Low concentrations of BPP and BPM significantly increased the expression of epithelial-mesenchymal transition (EMT) marker and related proteins such as N-cadherin, MMP-9, MMP-2 and Snail, and also enhanced phosphorylation of AKT both in vitro and in vivo. When PI3K inhibitor wortmannin was applied to specifically inhibit phosphorylation of AKT, the expression of target genes markedly decreased, and the TNBC metastasis induced by low-concentration BPP and BPM were reversed. In conclusion, these results showed that PI3K/AKT signaling regulate BPP/BPM-induced metastasis of TNBC by triggering EMT. This study provides insights into the effects and the potential mechanisms of BPP and BPM on TNBC, raising concerns about the risk of using these two bisphenols as the alternative of BPA.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células
15.
Angew Chem Int Ed Engl ; 62(25): e202303117, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37078760

RESUMO

Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2 RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2 RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO- Faraday efficiency of ≈95 % and an HCOO- partial current of ≈250 mA cm-2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2 RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2 RR catalysts.


Assuntos
Bismuto , Dióxido de Carbono , Formiatos , Enxofre , Hidrogênio
16.
Angew Chem Int Ed Engl ; 62(27): e202218122, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37081751

RESUMO

Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3 C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3 C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust "quasi-solid-gas" state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3 C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 µg h-1 mg-1 cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 - yield rate up to 15.7 µg h-1 mg-1 cat. and FE up to 3.4 % in nitrogen oxidation reaction).

17.
Angew Chem Int Ed Engl ; 62(18): e202301192, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36866940

RESUMO

Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an "escort effect" of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+ ) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900 h at 1 mA cm-2 (more than 4 times longer than the blank one). Moreover, the universality of "escort effect" is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries.

18.
Nanomicro Lett ; 15(1): 81, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002511

RESUMO

Although their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction, Zn corrosion and passivation, and Zn dendrite formation on the anode. Despite numerous strategies to alleviate these side reactions have been demonstrated, they can only provide limited performance improvement from a single aspect. Herein, a triple-functional additive with trace amounts, ammonium hydroxide, was demonstrated to comprehensively protect zinc anodes. The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes. Moreover, cationic NH4+ can preferentially adsorb on the Zn anode surface to shield the "tip effect" and homogenize the electric field. Benefitting from this comprehensive protection, dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized. Besides, improved electrochemical performances can also be achieved in Zn//MnO2 full cells by taking the advantages of this triple-functional additive. This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.

19.
Opt Lett ; 48(4): 956-959, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790984

RESUMO

Anomalous reflection from metasurfaces with 100% efficiency at optical frequencies was not achieved until an all-dielectric quasi-three-dimensional subwavelength structure was proposed. The desired nonlocal control of light waves is realized by designing phase responses of multilayer films at a single wavelength. However, a high-efficiency bandwidth is not controllable by designing only the phase response at a single wavelength. Here, we propose the use of a multilayer metasurface to achieve anomalous reflection with a customized high-efficiency bandwidth. The interference of the successive light waves scattered from the structure at multiple wavelengths is controlled by phase dispersion regulation of multilayer films. As a proof of concept, two sets of multilayer films with different phase dispersions were designed to realize broadband (∼110 nm) and narrowband (∼15 nm) anomalous reflections, both with an efficiency of over 80%. The results offer a general strategy to design high-efficiency anomalous reflection with arbitrary bandwidth and might stimulate various potential applications for metadevices.

20.
Angew Chem Int Ed Engl ; 62(16): e202300608, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36809576

RESUMO

The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2 O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2 O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2 O-based electrolyte demonstrated more stable cycling performance which displayed ∼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8-2.0 V and 3,000 cycles with a normal voltage window of 0.8-1.9 V at a current density of 2 A g-1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...