Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1021-1026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750362

RESUMO

Nanoscale structures can produce extreme strain that enables unprecedented material properties, such as tailored electronic bandgap1-5, elevated superconducting temperature6,7 and enhanced electrocatalytic activity8,9. While uniform strains are known to elicit limited effects on heat flow10-15, the impact of inhomogeneous strains has remained elusive owing to the coexistence of interfaces16-20 and defects21-23. Here we address this gap by introducing inhomogeneous strain through bending individual silicon nanoribbons on a custom-fabricated microdevice and measuring its effect on thermal transport while characterizing the strain-dependent vibrational spectra with sub-nanometre resolution. Our results show that a strain gradient of 0.112% per nanometre could lead to a drastic thermal conductivity reduction of 34 ± 5%, in clear contrast to the nearly constant values measured under uniform strains10,12,14,15. We further map the local lattice vibrational spectra using electron energy-loss spectroscopy, which reveals phonon peak shifts of several millielectron-volts along the strain gradient. This unique phonon spectra broadening effect intensifies phonon scattering and substantially impedes thermal transport, as evidenced by first-principles calculations. Our work uncovers a crucial piece of the long-standing puzzle of lattice dynamics under inhomogeneous strain, which is absent under uniform strain and eludes conventional understanding.

2.
Nano Lett ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525903

RESUMO

The c-axis piezoresistivity is a fundamental and important parameter of graphite, but its value near zero pressure has not been well determined. Herein, a new method for studying the c-axis piezoresistivity of van der Waals materials near zero pressure is developed on the basis of in situ scanning electron microscopy and finite element simulation. The c-axis piezoresistivity of microscale highly oriented pyrolytic graphite (HOPG) is found to show a large value of 5.68 × 10-5 kPa-1 near zero pressure and decreases by 2 orders of magnitude to the established value of ∼10-7 kPa-1 when the pressure increases to 200 MPa. By modulating the serial tunneling barrier model on the basis of the stacking faults, we describe the c-axis electrical transport of HOPG under compression. The large c-axis piezoresistivity near zero pressure and its large decrease in magnitude with pressure are attributed to the rapid stiffening of the electromechanical properties under compression.

3.
Adv Mater ; : e2303014, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049925

RESUMO

Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.

4.
Sci Adv ; 9(16): eadf2709, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075111

RESUMO

Three-dimensional surface-conformable electronics is a burgeoning technology with potential applications in curved displays, bioelectronics, and biomimetics. Flexible electronics are notoriously difficult to fully conform to nondevelopable surfaces such as spheres. Although stretchable electronics can well conform to nondevelopable surfaces, they need to sacrifice pixel density for stretchability. Various empirical designs have been explored to improve the conformability of flexible electronics on spherical surfaces. However, no rational design guidelines exist. This study uses a combination of experimental, analytical, and numerical approaches to systematically investigate the conformability of both intact and partially cut circular sheets on spherical surfaces. Through the analysis of thin film buckling on curved surfaces, we identify a scaling law that predicts the conformability of flexible sheets on spherical surfaces. We also quantify the effects of radial slits on enhancing conformability and provide a practical guideline for using these slits to improve conformability from 40% to more than 90%.

5.
Nano Lett ; 23(2): 742-749, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36472369

RESUMO

The flexible and clinging nature of ultrathin films requires an understanding of their elastic and adhesive properties in a wide range of circumstances from fabrications to applications. Simultaneously measuring both properties, however, is extremely difficult as the film thickness diminishes to the nanoscale. Here we address such difficulties through peeling by pulling thin films off from the substrates (we thus refer to it as "pull-to-peel"). Particularly, we perform in situ pull-to-peel of graphene and MoS2 films in a scanning electron microscope and achieve simultaneous determination of their Young's moduli and adhesions to gold substrates. This is in striking contrast to other conceptually similar tests available in the literature, including indentation tests (only measuring elasticity) and spontaneous blisters (only measuring adhesion). Furthermore, we show a weakly nonlinear Hooke's relation for the pull-to-peel response of two-dimensional materials, which may be harnessed for the design of nanoscale force sensors or exploited in other thin-film systems.

6.
iScience ; 25(1): 103728, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072014

RESUMO

Compared with bulk materials, atomically thin two-dimensional (2D) crystals possess a range of unique mechanical properties, including relatively high in-plane stiffness and large bending flexibility. The atomic 2D building blocks can be reassembled into precisely designed heterogeneous composite structures of various geometries with customized mechanical sensing behaviors. Due to their small specific density, high flexibility, and environmental adaptability, mechanical sensors based on 2D materials can conform to soft and curved surfaces, thus providing suitable solutions for functional applications in future wearable devices. In this review, we summarize the latest developments in mechanical sensors based on 2D materials from the perspective of function-oriented applications. First, typical mechanical sensing mechanisms are introduced. Second, we attempt to establish a correspondence between typical structure designs and the performance/multi-functions of the devices. Afterward, several particularly promising areas for potential applications are discussed, following which we present perspectives on current challenges and future opportunities.

7.
Nat Commun ; 12(1): 5069, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417453

RESUMO

Although layered van der Waals (vdW) materials involve vast interface areas that are often subject to contamination, vdW interactions between layers may squeeze interfacial contaminants into nanopockets. More intriguingly, those nanopockets could spontaneously coalesce into larger ones, which are easier to be squeezed out the atomic channels. Such unusual phenomena have been thought of as an Ostwald ripening process that is driven by the capillarity of the confined liquid. The underlying mechanism, however, is unclear as the crucial role played by the sheet's elasticity has not been previously appreciated. Here, we demonstrate the coalescence of separated nanopockets and propose a cleaning mechanism in which both elastic and capillary forces are at play. We elucidate this mechanism in terms of control of the nanopocket morphology and the coalescence of nanopockets via a mechanical stretch. Besides, we demonstrate that bilayer graphene interfaces excel in self-renewal phenomena.

8.
ACS Appl Mater Interfaces ; 13(22): 26610-26620, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038072

RESUMO

A promising materials engineering method for improving the strength of crystalline materials is to add obstacles to dislocation motion that induce interface hardening (IH) or precipitate hardening (PH). In this study, molecular dynamics simulations are performed for Ni/graphene composites, revealing for the first time that graphene can strengthen the Ni matrix not only strictly via IH or PH but also through a continuous transition between the two. When graphene behaves like an interface, dislocation pileups form, whereas when it behaves as a precipitate, complex Orowan looping occurs by dislocation cross-slip. IH transitions to PH when the integrity of the graphene-dislocation configuration (GDC) deteriorates, leading to a reduced strengthening effect. Furthermore, the deformation of graphene is found to be an effective signature to indicate the real-time strengthening. This observation relates the graphene strengthening effect on metals to a combination of parameters, such as the GDC integrity, graphene deformation, and dislocation evolution, opening an avenue to tune the mechanical properties by controlling the dislocation movements and manipulating the dislocation-obstacle interaction mechanisms.

9.
ACS Appl Mater Interfaces ; 13(2): 3040-3050, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33400503

RESUMO

The rapid development of two-dimensional (2D) materials has significantly broadened the scope of 2D science in both fundamental scientific interests and emerging technological applications, wherein the mechanical properties play an indispensably key role. Nevertheless, particularly challenging is the ultrathin nature of 2D materials that makes their manipulations and characterizations considerably difficult. Herein, thanks to the excellent flexibility of vanadium disulfide (VS2) sheets, their susceptibility to out-of-plane deformation is exploited to realize the controllable loading and enable the accurate measurements of mechanical properties. In particular, the Young's modulus is estimated to be 44.4 ± 3.5 GPa, approaching the lower limit for 2D transition metal dichalcogenides (TMDs). We further report the first measurement of thickness-dependent bending rigidity of VS2, which deviates from the prediction of the classical continuum mechanics theory. Additionally, a deeper understanding of the mechanics within two dimensions also facilitates the modulation of strain-coupled physics at the nanoscale. Our Raman measurements showed the Grüneisen parameters for VS2 were determined for the first time to be γE2g1 ≈ 0.83 and γA1g ≈ 0.32.

10.
ACS Appl Mater Interfaces ; 12(36): 40958-40967, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805838

RESUMO

Assembling monolayers into a bilayer system unlocks the rotational free degree of van der Waals (vdW) homo/heterostructure, enabling the building of twisted bilayer graphene (tBLG) which possesses novel electronic, optical, and mechanical properties. Previous methods for preparation of homo/heterstructures inevitably leave the polymer residue or hexagonal boron nitride (h-BN) mask, which usually obstructs the measurement of intrinsic mechanical and surface properties of tBLG. Undoubtedly, to fabricate the designable tBLG with clean interface and surface is necessary but challenging. Here, we propose a simple and handy method to prepare atomically clean twisted bilayer graphene with controllable twist angles based on wetting-induced delamination. This method can transfer tBLG onto a patterned substrate, which offers an excellent platform for the observation of physical phenomena such as relaxation of moiré pattern in marginally tBLG. These findings and insight should ultimately guide the designable packaging and atomic characterization of the two-dimensional (2D) materials.

11.
Nanoscale ; 11(47): 22804-22812, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31750492

RESUMO

The development of electromagnetic interference (EMI) shielding materials is moving forward towards being lightweight and showing high-performance. Here, we report on lightweight silver nanowire (AgNW)/MXene hybrid sponges featuring hierarchical structures that are fabricated by a combination of dip-coating and unidirectional freeze-drying methods. The commercial melamine formaldehyde sponges (MF), designed with a buckled structure, are chosen as the template for coating with the AgNW layer (BMF/AgNW). Furthermore, the additional irregular honeycomb architecture composed of MXene assembled cell walls is introduced inside the BMF cell-matrix through unidirectional freeze-drying of MXene aqueous suspensions. Consequently, the BMF/AgNW presents a better EMI shielding effectiveness of 40.0 dB contributed by the conductive network and multiple reflections and scattering compared with the MF/AgNW. Eventually, the resulting AgNW/MXene hybrid sponge exhibits a higher EMI shielding effectiveness of 52.6 dB with a low density of 49.5 mg cm-3 compared with the BMF/AgNW due to synergetic effects of the AgNW and MXene both in conductivity and hierarchical structure. These results also provide a novel way to fabricate lightweight and conductive sponges as high-performance EMI shielding materials.

12.
Phys Rev Lett ; 123(11): 116101, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573244

RESUMO

Out-of-plane deformation patterns, such as buckling, wrinkling, scrolling, and folding, formed by multilayer van der Waals materials have recently seen a surge of interest. One crucial parameter governing these deformations is bending rigidity, on which significant controversy still exists despite extensive research for more than a decade. Here, we report direct measurements of bending rigidity of multilayer graphene, molybdenum disulfide (MoS_{2}), and hexagonal boron nitride (hBN) based on pressurized bubbles. By controlling the sample thickness and bubbling deflection, we observe platelike responses of the multilayers and extract both their Young's modulus and bending rigidity following a nonlinear plate theory. The measured Young's moduli show good agreement with those reported in the literature (E_{graphene}>E_{hBN}>E_{MoS_{2}}), but the bending rigidity follows an opposite trend, D_{graphene}

13.
ACS Appl Mater Interfaces ; 11(6): 6541-6549, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30648377

RESUMO

Many three-dimensional (3D) nanomaterial-based assemblies need incorporation with elastomers to attain stretchability-that also compromises their pristine advantages for functional applications. Here, we show the design of elastomer-free, highly deformable silver nanowire (AgNW) conductors through dip-coating AgNWs on a 3D polymeric scaffold and following a simple triaxial compression approach. The resulting 3D AgNW conductors exhibit good stability of resistance under multimodal deformation, such as stretching, compressing, and bending as well as comparable conductivity with those elastomer-based ones. Moreover, the buckled structures endow our 3D conductors with novel negative Poisson's ratio behavior, which can offer good comfortability to curvilinear surfaces. The combination of mechanical properties, conductive performance, and unique deformation characteristics can satisfy multiscale conformal mechanics with a soft, curvilinear human body.

14.
Adv Mater ; 31(45): e1805417, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30650204

RESUMO

Triggered by the growing needs of developing semiconductor devices at ever-decreasing scales, strain engineering of 2D materials has recently seen a surge of interest. The goal of this principle is to exploit mechanical strain to tune the electronic and photonic performance of 2D materials and to ultimately achieve high-performance 2D-material-based devices. Although strain engineering has been well studied for traditional semiconductor materials and is now routinely used in their manufacturing, recent experiments on strain engineering of 2D materials have shown new opportunities for fundamental physics and exciting applications, along with new challenges, due to the atomic nature of 2D materials. Here, recent advances in the application of mechanical strain into 2D materials are reviewed. These developments are categorized by the deformation modes of the 2D material-substrate system: in-plane mode and out-of-plane mode. Recent state-of-the-art characterization of the interface mechanics for these 2D material-substrate systems is also summarized. These advances highlight how the strain or strain-coupled applications of 2D materials rely on the interfacial properties, essentially shear and adhesion, and finally offer direct guidelines for deterministic design of mechanical strains into 2D materials for ultrathin semiconductor applications.

15.
ACS Appl Mater Interfaces ; 11(1): 1563-1570, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30499288

RESUMO

Deterministic design of surface patterns has seen a surge of interests because of their wide applications in flexible and stretchable electronics, microfluidics, and optical devices. Recently, instability of bilayer systems has been extensively utilized by which micro-/nano-patterns of a film can be easily achieved through macroscopically deforming the underlying substrate. For a bilayer system with traditional thermostable substrates, the pattern morphology is only determined by initial strain mismatch of the two layers, and the realization of localized patterns appears to be particularly challenging because of the difficulties associated with manipulating inhomogeneous deformations. In this work, we exploit cross-linked polyethylene ( cPE), a shape memory polymer (SMP), as the flexible substrate for building micro-/nano-structures of sputtered gold films. We find that the shape memory effect can offer new dimensions for designing diverse and hierarchical surface structures by harnessing film thickness orheating time and by globally or locally controlling the thermal field. By combining those strategies, we further demonstrate versatile hierarchical, superimposed, and local surface patterns based on this cPE/gold (Au) system. Piezoresistive pressure sensors are assembled with the obtained patterned surface, which have high sensitivity, operational range, and cyclic stability. These results highlight the unique advantages of SMPs for building arbitrary surface patterns.

16.
Proc Natl Acad Sci U S A ; 115(31): 7884-7889, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30006468

RESUMO

Layered systems of 2D crystals and heterostructures are widely explored for new physics and devices. In many cases, monolayer or few-layer 2D crystals are transferred to a target substrate including other 2D crystals, and nanometer-scale blisters form spontaneously between the 2D crystal and its substrate. Such nanoblisters are often recognized as an indicator of good adhesion, but there is no consensus on the contents inside the blisters. While gas-filled blisters have been modeled and measured by bulge tests, applying such models to spontaneously formed nanoblisters yielded unrealistically low adhesion energy values between the 2D crystal and its substrate. Typically, gas-filled blisters are fully deflated within hours or days. In contrast, we found that the height of the spontaneously formed nanoblisters dropped only by 20-30% after 3 mo, indicating that probably liquid instead of gas is trapped in them. We therefore developed a simple scaling law and a rigorous theoretical model for liquid-filled nanoblisters, which predicts that the interfacial work of adhesion is related to the fourth power of the aspect ratio of the nanoblister and depends on the surface tension of the liquid. Our model was verified by molecular dynamics simulations, and the adhesion energy values obtained for the measured nanoblisters are in good agreement with those reported in the literature. This model can be applied to estimate the pressure inside the nanoblisters and the work of adhesion for a variety of 2D interfaces, which provides important implications for the fabrication and deformability of 2D heterostructures and devices.

17.
Small ; 14(27): e1800819, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847706

RESUMO

Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa-1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin.

18.
Adv Mater ; 30(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29068560

RESUMO

Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m-2 , top: ≈30 000 cd m-2 , total: ≈73 000 cd m-2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in.-1 ) shows the potential of the full-color transparent display.

19.
RSC Adv ; 8(63): 36257-36263, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558487

RESUMO

Due to their extraordinary mechanical properties, nanocarbon materials (e.g. carbon nanotube and graphene) are attracting great interests in the field of nanocomposites. One unique feature in nanocarbon-based nanocomposites is their intrinsically rich interface, allowing them to adapt the microstructures in response to external loading and, in turn, to stiffen themselves. This mechanical behavior, called responsive stiffening, was usually observed in biological materials such as bones and muscles. The mechanically responsive behaviors of nanocarbon-based materials are particularly exciting because the nanocarbon-enabled huge interface area offers opportunities to tune such stiffening performance while this interface advantage is not fully exploited yet. Here, we demonstrate stiffening behaviors in graphene oxide (GO)-based film materials in response to dynamic oscillations. Through a facile method of polymer content alteration and alkali treatment, the microstructure and interlayer interaction of GO films are modified, along with the resulted responsively stiffening performance. Based on polarized Raman spectra characterizations, we attribute the stiffening mechanism to the microstructural evolution of GO films during dynamic tension as well as the polymer chains alignment. Finally, we highlight the significantly improved static mechanical properties of GO film after a simple stiffening process. Our results not only aid in the development of biomimetic, adaptive materials, but provide a mechanical way for the design of high-performance nanocarbon-based nanocomposites.

20.
Phys Rev Lett ; 121(26): 266101, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636129

RESUMO

Nanoblisters such as nanobubbles and nanotents formed by two-dimensional (2D) materials have been extensively exploited for strain engineering purposes as they can produce self-sustained, nonuniform in-plane strains through out-of-plane deformation. However, deterministic measure and control of strain fields in these systems are challenging because of the atomic thinness and unconventional interface behaviors of 2D materials. Here, we experimentally characterize a simple and unified power law for the profiles of a variety of nanobubbles and nanotents formed by 2D materials such as graphene and MoS_{2} layers. Using membrane theory, we analytically unveil what sets the in-plane strains of these blisters regarding their shape and interface characteristics. Our analytical solutions are validated by Raman spectroscopy measured strain distributions in bulged graphene bubbles supported by strong and weak shear interfaces. We advocate that both the strain magnitudes and distributions can be tuned by 2D material-substrate interface adhesion and friction properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...