Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 339: 122283, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823934

RESUMO

Efficient removal of uranium from radioactive wastewater is crucial for both environmental protection and sustainable development of nuclear energy. However, selectively extracting uranium from acidic wastewater remains a significant challenge. Here we present a phytic acid-functionalized polyamidoxime/alginate hydrogel (PAG) via a facile one-step hydrothermal reaction. The PAG, leveraging the robust binding affinity of phytic acid and the selective coordination of amidoxime for U(VI), exhibited high efficiency and selectivity in adsorbing U(VI) from acidic uranium-containing wastewater. At pH 2.50, U(VI) adsorption equilibrium was achieved within 60 min, showcasing a maximum theoretical adsorption capacity of 218.34 mg/g. Additionally, the PAG demonstrated excellent reusability, maintaining a uranium removal rate exceeding 90 % over five adsorption-desorption cycles. Remarkably, the as-synthesized PAG removed 94.1 % of U(VI) from actual acidic uranium-contaminated groundwater with excellent anti-interference performance, reducing U(VI) concentration from 272.0 µg/L to 16.1 µg/L and making it meet the WHO drinking water standards (30 µg/L). The adsorption mechanism was elucidated through XPS and DFT calculation, revealing that the uranyl ion primarily coordinated with phosphate and amidoxime groups on phytic acid and polyamidoxime, respectively. These findings underscore the promising potential of PAG hydrogel for addressing acidic uranium-containing wastewater from uranium mining and metallurgy.

2.
Anal Methods ; 16(6): 837-845, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38230997

RESUMO

In this study, we developed a simple and sensitive colorimetric sensing method for the detection of UO22+, which was built to release MB from the molybdenum disulfide with a phosphate group (MoS2-PO4) gated mesoporous silica nanoparticles functionalized phosphate group (MSN-PO4) with UO22+ chelating. In the presence of UO22+, MoS2-PO4 can be effectively adsorbed onto the surface of MSN-PO4 based on the coordination chemistry for strong affinity between the P-O bond and UO22+. The adsorbed MoS2-PO4 was then utilized as an ideal gate material to control the release of signal molecules (MB) entrapped within the pores of MSN-PO4, resulting in a detectable decrease in the absorption peak at 663 nm. This colorimetric sensing demonstrated the advantages of simplicity and easy manipulation and exhibited a linear response to the concentration of UO22+ within the range of 0.02-0.2 µM. The detection limit of UO22+ was determined to be 0.85 nM, which was lower than the limit (130 nmol L-1) set by the US Environmental Protection Agency. Furthermore, the proposed colorimetric sensing method has been utilized to determine UO22+ in samples of Xiangjiang River and tap water, and a high recovery rate was achieved. This method shows promising potential in preventing and controlling environmental pollution.

3.
Environ Sci Pollut Res Int ; 30(14): 40478-40489, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609758

RESUMO

Uranium (U) is an important strategic resource as well as a heavy metal element with both chemical and radiotoxicity. At present, the rapid and efficient removal of uranium from wastewater remains a huge challenge for environmental protection and ecological security. In this paper, phosphate-modified biochar supporting nano zero-valent iron (PBC/nZVI) was triumphantly prepared and fully characterized. The introduction of polyphosphate can greatly increase the specific surface area of biochar pores, and then the zero-valent iron can be evenly distributed on the surface of material, thus leading to excellent removal performance of the PBC/nZVI for U(VI). The theoretical maximum U(VI) removal capacity of PBC/nZVI was up to 967.53 mg/g at pH 5. The results of adsorption kinetics, isotherm, and thermodynamics showed that the adsorption of uranium by PBC/nZVI was a monolayer physical adsorption and endothermic reaction. And the PBC/nZVI has favorable selectivity toward uranium against the interference of coexisting metal ions. Further mechanism studies show that the excellent uranium removal performance of PBC/nZVI is mainly attributed to the synergistic effect of physical adsorption and chemical reduction. This work proves that the PBC/nZVI has a wide application prospect in the field of uranium wastewater treatment.


Assuntos
Urânio , Poluentes Químicos da Água , Ferro/química , Cromo , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Água/química , Adsorção , Polifosfatos
4.
Environ Sci Pollut Res Int ; 29(51): 77839-77850, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35688975

RESUMO

Uranium (U) in the U-contaminated acidic red soil exhibits high mobility. In the present study, rice husk was used to produce biochar to remediate U-contaminated red soil under acid precipitation. Firstly, batch adsorption experiments showed that the dissolution of alkaline substance in biochar could buffer the pH value of acidic solution. The equilibrium pH value had a crucial influence on biochar adsorption capacity of U, and the neutral equilibrium pH value was favorable for adsorption. Then, the incubation experiments of red soil with biochar were performed, and the Synthetic Precipitation Leaching Procedure (SPLP) extraction of amended red soil showed that the short-term leachability of U was decreased from 26.53% in control group (without biochar) to 1.40% in 10% biochar-amended red soil. Subsequently, the sequential extraction showed that the fraction of U was mainly transformed from exchangeable and Fe/Mn oxide fraction to carbonate fraction after biochar amendment, and the total amount of exchangeable U and carbonate fraction U in soil was increased slightly. Finally, simulated acid rain leaching experiments showed that the capability of amended red soil to resist acid rain acidification was enhanced. And the long-term leachability of U in amended red soil was decreased from 26.37% in control group to 3.18% in the 10% biochar-amended red soil under the simulated acid rain leaching conditions. In conclusion, biochar has passivation effect on U in U-contaminated red soil, which can reduce the long-term and short-term mobility of U in acidic environments. This study provided an experimental basis for the application of biochar in remediation and improvement of U-contaminated acidic red soil.


Assuntos
Chuva Ácida , Oryza , Poluentes do Solo , Urânio , Urânio/análise , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise , Óxidos/química , Carbonatos
5.
J Hazard Mater ; 436: 129298, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739799

RESUMO

The interactions between dissolved organic matter (DOM) molecules and minerals play significant roles in affecting the fate of carbon and contaminants in soil environment. However, the mechanisms controlling the variations of DOM molecules distribution during the transformation of Fe (oxyhydr)oxides, and the effects of these variations on contaminant behaviors are still largely unknown. In this study, the dynamic variations of DOM properties and distributions, and the kinetics of uranium adsorption on and desorption from Fe (oxyhydr)oxides during the transformation were investigated, employing a combination of Orbitrap mass spectrometry (MS), high-resolution transmission electron microscopy (HR-TEM), and kinetic experiments. Orbitrap MS results indicated that aliphatic molecules and phenolic and polyphenolic molecules with lower O/C values were preferentially released to solution. HR-TEM results indicated that the coprecipitated DOM molecules by ferrihydrite were mainly released to solution rather than sorbed on the newly formed lepidocrocite or goethite during the transformation. Furthermore, the stirred-flow experiment results suggested that soil DOM significantly reduced the adsorption of uranium on, and accelerated the release of uranium from Fe (oxyhydr)oxides, which was ascribed to the changed distribution of DOM molecules and the structure and composition of Fe (oxyhydr)oxides. Our results contribute to predicting contaminant behaviors in soils.


Assuntos
Ferro , Urânio , Adsorção , Matéria Orgânica Dissolvida , Compostos Férricos , Cinética , Minerais , Oxirredução , Óxidos/química , Solo
6.
J Hazard Mater ; 426: 127786, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810005

RESUMO

In this study, humic-like substances (HLSs) was extracted from spent coffee grounds (SCGs), and it together with poly acrylic acid (PAA), was used for the first time to synthesize hydrogel material, namely HLSs/PAA gel, by one-step radical polymerization. Its maximum theoretical sorption capacity toward U(VI) at pH 3.00 was 661.01 mg/g, and it could decrease the concentration of U(VI) in acidic actual groundwater from 0.2537 to 0.0003 mg/L, showing that the gel had excellent U(VI) removal efficiency in acidic environment. The SEM characterization of HLSs/PAA gel showed that its macroporous network structure maintained well after the sorption process, indicating that the gel had excellent acid-resistant property. Moreover, the gel exhibited excellent anti-interference performance in the interfering ions effect experiment. The gel integrates the merits of excellent U(VI) sorption properties, stability and anti-interference performance in acidic environment, and has promising application prospects in the remediation of acidic uranium wastewater.


Assuntos
Hidrogéis , Urânio , Adsorção , Café , Substâncias Húmicas , Concentração de Íons de Hidrogênio
7.
Mikrochim Acta ; 187(5): 311, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367432

RESUMO

A superior electrochemical biosensor was designed for the determination of UO22+ in aqueous solution by integration of DNAzyme and DNA-modified gold nanoparticle (DNA-AuNP) network structure. Key features of this method include UO22+ inducing the cleavage of the DNAzyme and signal amplification of DNA-AuNP network structure. In this electrochemical method, the DNA-AuNP network structure can be effectively modified on the surface of gold electrode and then employed as an ideal signal amplification unit to generate amplified electrochemical response by inserting a large amount of electrochemically active indicator methylene blue (MB). In the presence of UO22+, the specific sites on DNA-AuNP network structure can be cleaved by UO22+, releasing the DNA-AuNP network structure with detectable reduction of electrochemical response intensity. The electrochemical response intensity is related to the concentration of UO22+. The logarithm of electrochemical response intensity and UO22+ concentration showed a wide linear range of 10~100 pM, and the detection limit reached 8.1 pM (S/N = 3). This method is successfully used for determination of UO22+ in water samples. Graphical abstract Fabricated DNAzyme network structure for enhanced electrical signal. Numerical experiments show that the current signal decreases as the concentration of UO22+ increases. It can be seen that the biosensors could be used to detect UO22+ in aqueous solution effectively.


Assuntos
Técnicas Biossensoriais/métodos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Compostos de Urânio/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Ouro/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Azul de Metileno/química , Reprodutibilidade dos Testes , Rios/química , Compostos de Urânio/química , Poluentes Químicos da Água/química
8.
Chemosphere ; 254: 126671, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334243

RESUMO

Efficient elimination of U(VI) from uranium wastewater is an urgent task for sustainable nuclear energy and environmental protection. In this study, magnetic graphene oxide decorated graphitic carbon nitride (mGO/g-C3N4) nanocomposite was prepared and used for photocatalytic reduction of U(VI) in wastewater under visible LED light irradiation for the first time. The batch experiments indicated that the mGO/g-C3N4 (mGCN) nanocomposite could efficiently reduce U(VI) under visible LED light, and a high U(VI) extraction capacity of 2880.6 mg/g was obtained with an extraction efficiency of 96.02%. The transmission electron microscopy (TEM) elemental mapping, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses demonstrated that the soluble U(VI) was immobilized by transforming it to metastudtite ((UO2)O2·2H2O) by mGCN nanocomposite under visible LED light irradiation. This work indicated that the mGCN is a promising visible light catalyst for treatment of uranium wastewater.


Assuntos
Processos Fotoquímicos , Urânio/química , Poluentes Radioativos da Água/química , Catálise , Grafite , Luz , Óxido de Magnésio , Nanocompostos/química , Compostos de Nitrogênio , Águas Residuárias/química
9.
Environ Sci Pollut Res Int ; 26(36): 37125-37136, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745769

RESUMO

Uranium-contaminated wastewater associated with uranium (U) mining and processing inevitably releases into soil environment. In order to assess the risk of U wastewater contamination to groundwater through percolation, U adsorption and transport behavior in a typical red soil in South China was investigated through batch adsorption and column experiments, and initial pH and carbonate concentration were considered of the high-sulfate background electrolyte solution. Results demonstrated that U adsorption isotherms followed the Freundlich model. The adsorption of U to red soil significantly decreased with the decrease of the initial pH from 7 to 3 in the absence of carbonate, protonation-deprotonation reactions controlled the adsorption capacity, and lnCs had a linear relationship with the equilibrium pH (pHeq). In the presence of carbonate, the adsorption was much greater than that in the absence of carbonate owing to the pHeq values buffered by carbonate, but the adsorption decreased with the increase of the carbonate concentration from 3.5 to 6.5 mM. Additionally, the breakthrough curves (BTCs) obtained by column experiments showed that large numbers of H+ and CO32- competed with the U species for adsorption sites, which resulted in BTC overshoot (C/C0 > 1). Numerical simulation results indicated that the BTCs at initial pH 4 and 5 could be well simulated by two-site chemical non-equilibrium model (CNEM), whereas the BTCs of varying initial carbonate concentrations were suitable for one-site CNEM. The fractions of equilibrium adsorption sites (f) seemed to correlate with the fractions of positively charged complexes of U species in solution. The values of partition coefficients (kd') were lower than those measured in batch adsorption experiments, but they had the same variation trend. The values of first-order rate coefficient (ω) for all BTCs were low, representing a relatively slow equilibrium between U in the liquid and solid phases. In conclusion, the mobility of U in the red soil increased with the decrease of the initial pH and with the increase of the initial carbonate concentrations.


Assuntos
Modelos Químicos , Poluentes Radioativos do Solo/análise , Urânio/análise , Adsorção , Carbonatos/química , China , Água Subterrânea , Concentração de Íons de Hidrogênio , Solo
10.
J Environ Radioact ; 208-209: 106036, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493563

RESUMO

In order to develop an artificially constructed plant community plot for the enhanced phytoremediation of uranium contaminated soils, three uranium accumulators including Bamboo-willow (Salix sp.), Paspalum scrobiculatum linn and Macleaya cordata were used to construct four artificial plant community plots, and greenhouse experiments were conducted to investigate the bioaccumulation of uranium by the plants and the organic acid content, enzyme activity, and the change of microbial community structure in their rhizosphere soils. The transfer factor (TF) and the total bioaccumulation amount (TBA) of uranium were used to describe remediation efficiencies in this paper. It was found that their remediation efficiencies were in the order Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata > Bamboo-willow (Salix sp.)-Macleaya cordata > Paspalum scrobiculatum linn-Macleaya cordata > Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn. The bioaccumulation amount of uranium by each plant in the Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata community plot was significantly (P < 0.05) higher than that by its single population, the bioaccumulation amounts of uranium by Bamboo-willow (Salix sp.), Paspalum scrobiculatum linn and Macleaya cordata were 0.29, 0.32 and 2.19 mg/plant, respectively, and they were increased by 31.82%, 77.78% and 146.07%, respectively, and the transfer efficiencies by the plants were increased by 150%, 110% and 52.17%, respectively. The interaction between the plants' roots and the microorganisms in the rhizosphere soil of the Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata community plot resulted in the high content of organic acids such as oxalic acid in the rhizosphere soil of the plant community plot, which was significantly (P < 0.05) higher than that of its single population. The chelation of the organic acids with uranium led to an increase in the proportion of exchangeable uranium in soil solution. In addition, Burkholderia, which is an iron-producing carrier bacterium and can increase the uptake and accumulation of uranium by plants, and Leptolyngbya, which is a plant growth promoting rhizobacteria and can increase the biomass of plants, emerged in the rhizosphere soil of the plant community plot. These may be the mechanisms by which the phytoremediation of the uranium contaminated soils was enhanced by the plant community plot.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo
11.
J Nanosci Nanotechnol ; 19(11): 6978-6986, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039850

RESUMO

A biosorbent, 4-sulfonylcalix[6]arene modified Fe3O4@Aspergillus Niger (MFSC), was successfully prepared through a two-step route for the effective removal of uranium (U(VI)) from aqueous solutions with high selectivity. The structure of MFSC was characterized by FT-IR, SEM, XRD, TGA and VSM, respectively. The impacts of various experimental parameters were investigated in detail. The results indicated that the biosorption of U(VI) on MFSC was mainly attributed to the electrostatic attraction (91% within 8 hours for U(VI)). The adsorption kinetics and adsorption isotherm of U(VI) were found to follow the pseudo second-order model and to be fitted by the Langmuir model, respectively. The thermodynamic parameters revealed that the adsorption process was spontaneous and endothermic. The findings herein highlight the MFSC with high ability for removal of U(VI) from aqueous solutions.


Assuntos
Urânio , Adsorção , Aspergillus niger , Concentração de Íons de Hidrogênio , Cinética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Urânio/análise
12.
J Nanosci Nanotechnol ; 18(12): 8160-8168, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189933

RESUMO

Magnetic graphene oxide/calix[6]arene (MGO-C6) composites were prepared and then characterized by Fourier transform infrared spectroscopy, Scanning electron microscope, X-ray diffraction and Thermo gravimetric analyzer, the adsorption of U(VI) by MGO-C6 from aqueous solution was investigated as a function of pH, contact time, initial U(VI) concentration and adsorbent dosage. The maximum adsorption rate of MGO-C6 can reach up to 93.21%, which was highly efficient for the removal of U(VI) under the condition of 1 mg/L initial uranium concentration. In addition, the selective adsorption experiment showed that MGO-C6 had an overall preference for U(VI). Adsorption process of MGO-C6 fitted well with the pseudo-second-order kinetic kinetics and the Langmuir isotherm model. The thermodynamic parameters illustrated that the adsorption process was endothermic and spontaneous. This work demonstrated that MGO-C6 was a promising adsorbent for removal of U(VI) from low concentration uranium-containing wastewater.

13.
Chemosphere ; 208: 846-853, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30068027

RESUMO

Redox oscillation is commonly found in near-surface environment, where soils are often polluted with many redox active contaminants, including uranium (U). In order to investigate the transformation of U species in near-surface soil under redox oscillations conditions, redox oscillations and reduction experiments were performed, biogeochemical parameters and native microbial community composition were monitored, main elements on the surface of solid-phase were analyzed by XPS, and labile U(IV) species and stable U(IV) species in solid-phase were provisionally defined using an anoxic 1 M sodium bicarbonate extraction. It was found that redox oscillations slightly increased the water-soluble U but significantly increased the stable U(IV) species (P < 0.05) in soil. In reduction experiment, there was upper limit value for percentage of stable U(IV) species, and the labile U(IV) species could not transform to stable U(IV) species in a short period of time under reduction conditions. The redox transition of Fe enriched on the surface of soil and the conversion of microbial community composition played a major role in speciation transformation of U under redox oscillations conditions. In addition, sequential extraction revealed that the increase of stable U(IV) species content reflected the U speciation transition from acetate extract to more recalcitrant hydroxylamine extract. The finding provides a potential method for improving the stability of U when bio-reduction is used to remediate the U-contaminated soils.


Assuntos
Poluição Ambiental/análise , Poluentes do Solo/análise , Solo/química , Urânio/análise , Oxirredução , Poluentes do Solo/química , Urânio/química
14.
RSC Adv ; 8(24): 13459-13465, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542523

RESUMO

In this work, uranium(vi) biomineralization by soluble ortho-phosphate from decomposition of the phosphate rock powder, a cheap and readily available material, was studied in detail. Penicillium funiculosum was effective in solubilizing P from the phosphate rock powder, and the highest concentration of the dissolved phosphate reached 220 mg L-1 (pH = 6). A yellow precipitate was immediately formed when solutions with different concentrations of uranium were treated with PO4 3--containing fermentation broth, and the precipitate was identified as chernikovite by Fourier transform infrared spectroscopy, scanning electron microscope, and X-ray powder diffraction. Our study showed that the concentrations of uranium in solutions can be decreased to the level lower than maximum contaminant limit for water (50 µg L-1) by the Environmental Protection Agency of China when Penicillium funiculosum was incubated for 22 days in the broth containing 5 g L-1 phosphate rock powder.

15.
Chem Commun (Camb) ; 52(62): 9731, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27420024

RESUMO

Correction for 'Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea' by Zhongran Dai et al., Chem. Commun., 2016, 52, 8826-8829.

16.
Chem Commun (Camb) ; 52(57): 8826-9, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27345287

RESUMO

The reactivity of a catalytic polymerization system using photoresponsive azobenzene-based thiourea/PMDETA as a catalyst could be switched between slow and fast states by alternating exposure to UV and ambient light, because the active site of azobenzene thiourea is blocked via intramolecular hydrogen bonding when the azobenzene thiourea transfers from the E isomer to the Z isomer under UV irradiation.


Assuntos
Compostos Azo/química , Dioxanos/síntese química , Tioureia/química , Catálise , Dioxanos/química , Ligação de Hidrogênio , Luz , Estrutura Molecular , Processos Fotoquímicos , Polimerização
17.
Inorg Chem ; 55(1): 136-43, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684962

RESUMO

A high degree of chain end control in the isoselective ring-opening polymerization (ROP) of rac-lactide is a challenging research goal. In this work, eight highly active sodium and potassium phenolates as highly isoselective catalysts for the ROP of rac-lactide are reported. The best isoselectivity value of Pm = 0.94 is achieved. The isoselective mechanism is chain-end control through the analysis of the stereoerrors in the microstructure of a final polymer; thus, isotactic multiblock structure polymers are obtained, and the highest melt point can reach 192.5 °C. The donating group in phenolate can clearly accelerate the ROP reaction, potassium complexes are more active than the analogous sodium complexes, and the big spacial hindrance of the ligand can decrease the activity. The high isoselectivities of these complexes mostly result from their sandwich structure constructed by the plane of the crown and the plane of the anthryl group.

18.
Dalton Trans ; 44(37): 16383-91, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26308730

RESUMO

Two binuclear magnesium and zinc alkoxides supported by a bis-salalen type dinucleating heptadentate Schiff base ligand were synthesized and fully characterized. The two complexes are efficient initiators for the ring-opening polymerization (ROP) of L-lactide, affording polymers with narrow polydispersities and desirable molecular weights. Interestingly, the mechanisms for the ROP of lactide are different at different temperatures. At a high temperature of 130 °C, a coordination-insertion mechanism is reasonable for the bulk melt polymerization of lactide. At a low temperature, the alkoxide cannot initiate the ROP reaction; however, upon the addition of external benzyl alcohol into the system, the ROP of lactide can smoothly proceed via an "activated monomer" mechanism. In addition, these complexes display slight stereo-selectivity for the ring-opening polymerization of rac-lactide, affording partially isotactic polylactide in toluene with a Pm value of 0.59.


Assuntos
Dioxanos/química , Magnésio/química , Zinco/química , Catálise , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular , Óxidos/química , Polimerização , Polímeros/química , Estereoisomerismo , Temperatura
19.
Dalton Trans ; 44(12): 5692-702, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25710446

RESUMO

Seven new type metallocavitand complexes 1­7 were synthesized via the self-assembly of aluminum and magnesium atrane-likes. The recognition of R-2-butanol from racemic 2-butanol can be achieved in the chiral cavity of metallocavitand complex 5. The crystal structure of complex 5 showed that the enantioselectivity of the center cavity for the inclusion of two 2-butanol molecules is higher than that of the groups at the outer rim, which indicates that the size-limited cavity is more sensitive to the chirality of 2-butanol. Furthermore, desorption of R-2-butanol is successful through vacuumization which afforded complex 6 and gives R-2-butanol with an enantiomeric excess (ee) value of 53(±1)%. The reaction of enantiopure H3L2, MgnBu2, and racemic 1-phenylethanol afforded complex 7. The structure of complex 7 showed that the center cavity was occupied by three H2O molecules and one molecular R-1-phenylethanol suspended in the outer rim of the metallocavitand via a hydrogen bond, which indicated that 1-phenylethanol is too bulky for the size-limited cavity. Because a certain amount of racemic 1-phenylethanol is also co-crystallized in the unit cell, the final separated 1-phenylethanol has an ee value of 33(±1)%. The host­guest mechanism for the separation is clearly determined through X-ray crystal structural analysis.

20.
Inorg Chem ; 54(4): 1737-43, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25597469

RESUMO

Two crown ether complexes of sodium and potassium naphthalenolates were synthesized and entirely characterized. The two complexes can iso-selectively catalyze the ring-opening polymerization (ROP) of rac-lactide at room temperature and afford polylactides with desired molecular weights and narrow PDIs; the best isotacticity (Pm) achieved was 0.73.


Assuntos
Complexos de Coordenação/química , Éteres de Coroa/química , Naftalenos/química , Poliésteres/síntese química , Potássio/química , Sódio/química , Catálise , Complexos de Coordenação/síntese química , Modelos Moleculares , Estrutura Molecular , Poliésteres/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...