Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(8): 3908-3916, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37499269

RESUMO

Nanocellulose is emerging as a sustainable building block in materials science. Surface modification via polymer grafting has proven to be effective in tuning diverse material properties of nanocellulose, including wettability of films and the reinforcement effect in polymer matrices. Despite its widespread use in various environments, the structure of a single polymer-grafted nanocellulose remains poorly understood. Here, we investigate the morphologies of polymer-grafted CNFs at water-mica and air-mica interfaces by using all-atom molecular dynamics simulation and atomic force microscopy. We show that the morphologies of the polymer-grafted CNFs undergo a marked change in response to the surrounding environment due to variations in the conformation of the surface polymer chains. Our results provide novel insights into the molecular structure of polymer-grafted CNFs and can facilitate the design and development of innovative biomass-based nanomaterials.


Assuntos
Nanoestruturas , Polímeros , Polímeros/química , Silicatos de Alumínio , Estrutura Molecular
2.
Macromol Rapid Commun ; 44(17): e2300186, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37265024

RESUMO

Water containing low amounts of cellulose nanofiber (CNF) is widely used as a thickening agent owing to its three unique properties: high transparency, viscosity, and controllable viscosity based on the shear rate. CNF dry powders are used to reduce the transportation and storage costs or expand applications as a thickening agent. Herein, the preparation of CNF dry powders that can be used to obtain redispersions while maintaining the aforementioned properties is reported. In this regard, the dehydration and vaporization procedures for a CNF water dispersion without using additives are discussed. When dry powders are prepared by removing water by boiling, their redispersions do not exhibit all their unique properties because of dense aggregations. However, when their redispersions are vigorously stirred to break the dense aggregations, they become transparent, although they do not recover their initial viscosity. Freeze-dried powders recover all their initial properties after redispersion. Nevertheless, their large volume does not reduce the transportation and storage costs. When the liquid is evaporated from the solvent-exchanged CNF organogels, their redispersions also fully recover all their properties. Furthermore, the evaporative dry powders with dense small volumes and good handling contribute to reducing the transportation and storage costs.


Assuntos
Nanofibras , Água , Pós , Viscosidade , Celulose
3.
Small ; 19(30): e2302276, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183294

RESUMO

Nanocellulose is attracting attention in the field of materials science as a sustainable building block. Nanocellulose-based materials, such as films, membranes, and foams, are fabricated by drying colloidal dispersions. However, little is known about how the structure of a single nanocellulose changes during the complex drying process. Here, all-atom molecular dynamics simulations and atomic force microscopy is used to investigate the structural dynamics of single nanocellulose during drying. It is found that the twist morphology of the nanocellulose became localized along the fibril axis during the final stage of the drying process. Moreover, it is shown that conformational changes at C6 hydroxymethyl groups and glycoside bond is accompanied by the twist localization, indicating that the increase in the crystallinity occurred in the process. It is expected that the results will provide molecular insights into nanocellulose structures in material processing, which is helpful for the design of materials with advanced functionalities.

4.
Biomacromolecules ; 24(2): 661-666, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36583854

RESUMO

Regenerated and mercerized celluloses are widely used in our daily life and industries. Examples include clothes, medical supplies, and separation membranes. In such applications, the true density is an important derived physical quantity for refining the structural designs of regenerated and mercerized celluloses. Here, we report the true density-crystallinity correlation of regenerated and mercerized celluloses. Seven samples were prepared through either dissolution-regeneration or mercerization, and the true density of each sample was measured by helium gas pycnometry. The crystallinity was evaluated by solid-state 13C nuclear magnetic resonance spectroscopy based on the ratio of the carbon atoms in the crystallite core to those at crystallite surfaces and in the surrounding amorphous matrix. We found that the true density of regenerated and mercerized celluloses is directly proportional to crystallinity, irrespective of the preparation process. Additionally, the molecular packing density at the crystallite surfaces was found to be similar to that in the amorphous matrix.


Assuntos
Celulose , Celulose/química
5.
Nano Lett ; 22(21): 8406-8412, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36283691

RESUMO

Nanocellulose is regarded as a green and renewable nanomaterial that has attracted increased attention. In this study, we demonstrate that nanocellulose materials can exhibit high thermal conductivity when their nanofibrils are highly aligned and bonded in the form of filaments. The thermal conductivity of individual filaments, consisting of highly aligned cellulose nanofibrils, fabricated by the flow-focusing method is measured in dried condition using a T-type measurement technique. The maximum thermal conductivity of the nanocellulose filaments obtained is 14.5 W/m-K, which is approximately five times higher than those of cellulose nanopaper and cellulose nanocrystals. Structural investigations suggest that the crystallinity of the filament remarkably influence their thermal conductivity. Smaller diameter filaments with higher crystallinity, that is, more internanofibril hydrogen bonds and less intrananofibril disorder, tend to have higher thermal conductivity. Temperature-dependence measurements also reveal that the filaments exhibit phonon transport at effective dimension between 2D and 3D.


Assuntos
Nanopartículas , Nanoestruturas , Celulose/química , Condutividade Térmica , Hidrodinâmica , Nanoestruturas/química
6.
Nanoscale Horiz ; 7(10): 1186-1191, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040123

RESUMO

Atomic-scale dent structures on the surfaces of cellulose nanofibers were detected by comparing the experimentally measured and computer-simulated widths of single nanofibers. These dent parts constituted at least 30-40% of the total length of the dispersed nanofibers, and deep dents induced the kinking and fragmentation of nanofibers.


Assuntos
Nanofibras , Celulose/química , Nanofibras/química
7.
J R Soc Interface ; 19(191): 20220120, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642424

RESUMO

Organisms use various forms and orientations of chitin nanofibres to make structures with a wide range of functions, from insect wings to mussel shells. Lophotrochozoan animals such as snails and annelid worms possess an ancient 'biomineralization toolkit', enabling them to flexibly and rapidly evolve unique hard parts. The scaly-foot snail is a gastropod endemic to deep-sea hydrothermal vents, unique in producing dermal sclerites used as sites of sulfur detoxification. Once considered to be strictly proteinaceous, recent data pointed to the presence of chitin in these sclerites, but direct evidence is still lacking. Here, we show that ß-chitin fibres (approx. 5% of native weight) are indeed the building framework, through a combination of solid-state nuclear magnetic resonance spectroscopy, wide-angle X-ray diffraction, and electron microscopy. The fibres are uniaxially oriented, likely forming a structural basis for column-like channels into which the scaly-foot snail is known to actively secrete sulfur waste-expanding the known function of chitinous hard parts in animals. Our results add to the existing evidence that animals are capable of modifying and co-opting chitin synthesis pathways flexibly and rapidly, in order to serve novel functions during their evolution.


Assuntos
Bivalves , Nanofibras , Animais , Quitina/química , Caramujos , Enxofre
8.
Angew Chem Int Ed Engl ; 60(46): 24630-24636, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34490699

RESUMO

Crystallites form a grain boundary or the inter-crystallite interface. A grain boundary is a structural defect that hinders the efficient directional transfer of mechanical stress or thermal phonons in crystal aggregates. We observed that grain boundaries within an aggregate of crystalline cellulose nanofibers (CNFs) were crystallized by enhancing their inter-crystallite interactions; multiple crystallites were coupled into single fusion crystals, without passing through a melting or dissolving state. Accordingly, the lowered crystallinity of CNFs, which has been considered irreversible, was recovered, and the thermal energy transfer in the aggregate was significantly improved. Other nanofibrous crystallites of chitin also showed a similar fusion phenomenon by enhancing the inter-crystallite interactions. Such crystallite fusion may naturally occur in biological structures with network skeletons of aggregated fibrillar crystallites having mechanical or thermal functions.

9.
ACS Nano ; 15(2): 2730-2737, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33464042

RESUMO

Cellulose is crystallized by plants and other organisms into fibrous nanocrystals. The mechanical properties of these nanofibers and the formation of helical superstructures with energy dissipating and adaptive optical properties depend on the ordering of polysaccharide chains within these nanocrystals, which is typically measured in bulk average. Direct measurement of the local polysaccharide chain arrangement has been elusive. In this study, we use the emerging technique of scanning electron diffraction to probe the packing of polysaccharide chains across cellulose nanofibers and to reveal local ordering of the chains in twisting sections of the nanofibers. We then use atomic force microscopy to shed light on the size dependence of the inherent driving force for cellulose nanofiber twisting. The direct measurement of crystalline twisted regions in cellulose nanofibers has important implications for understanding single-cellulose-fibril properties that influence the interactions between cellulose nanocrystals in dense assemblies. This understanding may enable cellulose extraction and separation processes to be tailored and optimized.


Assuntos
Nanofibras , Nanopartículas , Celulose , Microscopia de Força Atômica , Polissacarídeos
10.
Front Chem ; 8: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117891

RESUMO

We report the anisotropic thermal expansion of a transparent nanopaper structure comprising cellulose nanofibers (CNFs). The coefficient of thermal expansion (CTE) of the nanopaper in the out-of-plane direction was 44.6 ppm/°C in the temperature range of 25-100°C, which is approximately five times larger than its CTE in the in-plane direction in the same temperature range (8.3 ppm/°C). Such a strong anisotropy in thermal expansion is mainly attributable to the anisotropic CTE values of single CNFs in the fiber axis and cross-sectional directions. We observed anisotropic thermal expansion even in a bioplastic composite containing only 2.5% w/w CNFs.

11.
Biomacromolecules ; 21(2): 939-945, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31820948

RESUMO

In materials science and crystallography, the true density is an important derived physical quantity of solids. Here we report the correlation of the true density of nanometer-wide fibrillar crystallites of cellulose with their purity, crystallinity, morphology, and surface functionality. In the single fibrils, all the cellulose molecules are uniaxiallly oriented. Thus, the true density indicates the molecular packing density in the single fibrils and is essential for the precise estimation of the volume fraction of cellulose in fibril-based composites or porous structures. We demonstrate that the true density of fibrillar crystallites of cellulose is approximately 1.60 g/cm3 irrespective of the biological origins of the cellulose (wood, cotton, or a tunicate) and the crystallinity. The true density is in fact independent of the dimension of the crystallites and the atomic conformation of the uniaxially oriented but noncrystalline molecules at the crystallite surface. In the single fibrils, all the cellulose molecules are densely packed from the crystalline core to the noncrystalline outermost regions. The value of 1.60 g/cm3 remains unchanged even when the fibrils are dispersed through the wet disintegration process of "nanocellulose" production. In contrast, tailoring the surface functionality of the fibrils by oxidation and/or adsorption results in a substantial change in the true density up to 1.8 g/cm3 or down to 1.3 g/cm3. The true density of nanocellulose is indeed governed by the surface functionality and has a strong gradient in the fibril cross-sectional direction.


Assuntos
Celulose/química , Cristalização/métodos , Nanoestruturas/química , Celulose/análise , Espectroscopia de Ressonância Magnética/métodos , Nanoestruturas/análise
12.
Front Chem ; 7: 316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134187

RESUMO

Xerogels are defined as porous structures that are obtained by evaporative drying of wet gels. One challenge is producing xerogels with high porosity and large specific surface areas, which are structurally comparable to supercritical-dried aerogels. Herein, we report on cellulose xerogels with a truly aerogel-like porous structure. These xerogels have a monolithic form with porosities and specific surface areas in the ranges of 71-76% and 340-411 m2/g, respectively. Our strategy is based on combining three concepts: (1) the use of a very fine type of cellulose nanofibers (CNFs) with a width of ~3 nm as the skeletal component of the xerogel; (2) increasing the stiffness of wet CNF gels by reinforcing the inter-CNF interactions to sustain their dry shrinkage; and (3) solvent-exchange of wet gels with low-polarity solvents, such as hexane and pentane, to reduce the capillary force on drying. The synergistic effects of combining these approaches lead to improvements in the porous structure in the CNF xerogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...