Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(12): 9741-9753, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470827

RESUMO

Water's anomalous behavior is often explained using a two-liquid model, where two types of water, high-density liquid (HDL) and low-density liquid (LDL), can be separated via a liquid-liquid phase transition (LLPT) at low temperature. Mixtures of water and the ionic liquid hydrazinium trifluoroacetate were suggested to also show an LLPT but with the advantage that there is no rapid ice crystallization hampering its observation. It remains controversial whether these solutions exhibit an LLPT or are instead associated with complex phase separation phenomena. We here show detailed low-temperature calorimetry and diffraction experiments on aqueous solutions containing hydrazinium trifluoroacetate and other similar ionic liquids, all at a solute mole fraction of x = 0.175. Hydrazinium trifluoroacetate, ammonium trifluoroacetate, ethylammonium trifluoroacetate and hydrazinium pentafluoropropionate all boast exothermic transitions unrelated to crystallization as well as remarkable structural changes upon cooling into the glassy state. We propose a model inspired by micelle formation and decomposition in surfactant solutions, which is complemented by MD simulations and allows rationalizing the rich phase behavior of our mixtures during cooling. The fundamental aspect of the model is the hydrophobic nature of fluorinated anions that enables aggregation, which is reversed upon cooling and culminates in the remarkable exothermic first-order transition observed at low temperature. That is, we assign the first-order transition not to an LLPT but to phase-separations similar to the ones when falling below the Krafft temperature. All other solutions merely show simple vitrification behavior. Still, they exhibit distinct differences in liquid fragility, which is decreased continuously with decreasing hydrophobicity of the anions. This might enable the systematic tuning of ionic liquids with the goal of designing aqueous solutions of specific fragility.

2.
ACS Catal ; 13(23): 15310-15321, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38058601

RESUMO

We demonstrate here through molecular simulations and mutational studies the origin of the enantioselectivity in the photoinduced radical cyclization of α-chloroacetamides catalyzed by ene-reductases, in particular the Gluconobacter oxidans ene-reductase and the Old Yellow Enzyme 1, which show opposite enantioselectivity. Our results reveal that neither the π-facial selectivity model nor a protein-induced selective stabilization of the transition states is able to explain the enantioselectivity of the radical cyclization in the studied flavoenzymes. We propose a new enantioinduction scenario according to which enantioselectivity is indeed controlled by transition-state stability; however, the relative stability of the prochiral transition states is not determined by direct interaction with the protein but is rather dependent on an inherent degree of freedom within the substrate itself. This intrinsic degree of freedom, distinct from the traditional π-facial exposure mode, can be controlled by the substrate conformational selection upon binding to the enzyme.

3.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37846957

RESUMO

We investigate the potential of surface plasmon polaritons at noble metal interfaces for surface-enhanced chiroptical sensing of dilute chiral drug solutions with nl volume. The high quality factor of surface plasmon resonances in both Otto and Kretschmann configurations enables the enhancement of circular dichroism differenatial absorption thanks to the large near-field intensity of such plasmonic excitations. Furthermore, the subwavelength confinement of surface plasmon polaritons is key to attain chiroptical sensitivity to small amounts of drug volumes placed around ≃100 nm by the metal surface. Our calculations focus on reparixin, a pharmaceutical molecule currently used in clinical studies for patients with community-acquired pneumonia, including COVID-19 and acute respiratory distress syndrome. Considering realistic dilute solutions of reparixin dissolved in water with concentration ≤5 mg/ml and nl volume, we find a circular-dichroism differential absorption enhancement factor of the order ≃20 and chirality-induced polarization distortion upon surface plasmon polariton excitation. Our results are relevant for the development of innovative chiroptical sensors capable of measuring the enantiomeric imbalance of chiral drug solutions with nl volume.


Assuntos
COVID-19 , Humanos , Dicroísmo Circular , Metais , Sulfonamidas
4.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37655770

RESUMO

In this paper, we apply a theoretical model for fluid state thermodynamics to investigate simulated water in supercooled conditions. This model, which we recently proposed and applied to sub- and super-critical fluid water [Zanetti-Polzi et al., J. Chem. Phys. 156(4), 44506 (2022)], is based on a combination of the moment-generating functions of the enthalpy and volume fluctuations as provided by two gamma distributions and provides the free energy of the system as well as other relevant thermodynamic quantities. The application we make here provides a thermodynamic description of supercooled water fully consistent with that expected by crossing the liquid-liquid Widom line, indicating the presence of two distinct liquid states. In particular, the present model accurately reproduces the Widom line temperatures estimated with other two-state models and well describes the heat capacity anomalies. Differently from previous models, according to our description, a cluster of molecules that extends beyond the first hydration shell is necessary to discriminate between the statistical fluctuation regimes typical of the two liquid states.

5.
J Am Chem Soc ; 145(24): 13232-13240, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289179

RESUMO

Photoenzymes are a rare class of biocatalysts that use light to facilitate chemical reactions. Many of these catalysts utilize a flavin cofactor to absorb light, suggesting that other flavoproteins might have latent photochemical functions. Lactate monooxygenase is a flavin-dependent oxidoreductase previously reported to mediate the photodecarboxylation of carboxylates to afford alkylated flavin adducts. While this reaction holds a potential synthetic value, the mechanism and synthetic utility of this process are unknown. Here, we combine femtosecond spectroscopy, site-directed mutagenesis, and a hybrid quantum-classical computational approach to reveal the active site photochemistry and the role the active site amino acid residues play in facilitating this decarboxylation. Light-induced electron transfer from histidine to flavin was revealed, which has not been reported in other proteins. These mechanistic insights enable the development of catalytic oxidative photodecarboxylation of mandelic acid to produce benzaldehyde, a previously unknown reaction for photoenzymes. Our findings suggest that a much wider range of enzymes have the potential for photoenzymatic catalysis than has been realized to date.


Assuntos
Ácido Láctico , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Oxirredução , Catálise , Flavinas/metabolismo
6.
Protein J ; 42(3): 219-228, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37233895

RESUMO

Metamorphic, or fold-switching, proteins feature different folds that are physiologically relevant. The human chemokine XCL1 (or Lymphotactin) is a metamorphic protein that features two native states, an [Formula: see text] and an all[Formula: see text] fold, which have similar stability at physiological condition. Here, extended molecular dynamics (MD) simulations, principal component analysis of atomic fluctuations and thermodynamic modeling based on both the configurational volume and free energy landscape, are used to obtain a detailed characterization of the conformational thermodynamics of human Lymphotactin and of one of its ancestors (as was previously obtained by genetic reconstruction). Comparison of our computational results with the available experimental data show that the MD-based thermodynamics can explain the experimentally observed variation of the conformational equilibrium between the two proteins. In particular, our computational data provide an interpretation of the thermodynamic evolution in this protein, revealing the relevance of the configurational entropy and of the shape of the free energy landscape within the essential space (i.e., the space defined by the generalized internal coordinates providing the largest, typically non-Gaussian, structural fluctuations).


Assuntos
Linfocinas , Sialoglicoproteínas , Humanos , Termodinâmica , Linfocinas/química , Linfocinas/metabolismo , Sialoglicoproteínas/química , Sialoglicoproteínas/metabolismo , Simulação de Dinâmica Molecular
7.
Angew Chem Int Ed Engl ; 62(16): e202216276, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36791234

RESUMO

Photosystem-II (PSII) is a multi-subunit protein complex that harvests sunlight to perform oxygenic photosynthesis. Initial light-activated charge separation takes place at a reaction centre consisting of four chlorophylls and two pheophytins. Understanding the processes following light excitation remains elusive due to spectral congestion, the ultrafast nature, and multi-component behaviour of the charge-separation process. Here, using advanced computational multiscale approaches which take into account the large-scale configurational flexibility of the system, we identify two possible primary pathways to radical-pair formation that differ by three orders of magnitude in their kinetics. The fast (short-range) pathway is dominant, but the existence of an alternative slow (long-range) charge-separation pathway hints at the evolution of redundancy that may serve other purposes, adaptive or protective, related to formation of the unique oxidative species that drives water oxidation in PSII.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Oxirredução
8.
J Biomol Struct Dyn ; 41(11): 4949-4956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35593533

RESUMO

Candida antarctica Lipase B (CALB) is a paradigm for the family of lipases. At pH 7, the optimal pH for catalysis, the protonation state of an aspartic acid of the active site (Asp134) could not be conclusively assigned. In fact, the pKa estimate provided by a widely used computational tool, namely PropKa, that predicts pKa values of ionizable groups in proteins based on the crystallographic structure, is only slightly above 7 (pKa = 7.25). This, along with the lack of an experimental evaluation, makes the assignment of its protonation state at neutral pH challenging. Here, we calculate the pKa of Asp134 by means of a fully atomistic multiscale computational approach based on classical molecular dynamics (MD) simulation and the perturbed matrix method (PMM), namely the MD-PMM approach. MD-PMM is able to take into account the dynamics of the system and, at the same time, to treat the deprotonation step at the quantum level. The calculations provide a pKa value of 8.9 ± 1.1, hence suggesting that Asp134 in CALB should be protonated at neutral, and even at slightly basic, pH.Communicated by Ramaswamy H. Sarma.


Assuntos
Ácido Aspártico , Proteínas Fúngicas , Domínio Catalítico , Proteínas Fúngicas/química , Lipase/química
9.
ACS Pharmacol Transl Sci ; 5(4): 255-265, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35434531

RESUMO

Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 µM. Among these, four compounds with IC50 values around 1 µM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein-inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.

10.
J Phys Chem B ; 126(18): 3450-3459, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483006

RESUMO

The photophysical characterization of four supramolecular complexes based on covalent cages 2H-S-2H, 2H-L-2H, Zn-S-2H, and Zn-L-2H, consisting in either two free-base porphyrins or one Zn(II) porphyrin and one free-base porphyrin connected by four flexible linkers of different lengths incorporating triazole binding sites, and their Ag(I) complexation are reported. The complexation processes have been followed by means of absorption and emission spectroscopies, and a comprehensive computational study explains the behavior of the free-base porphyrin-containing cages. Absorption and emission features have been interpreted on the bases of conformational changes, metalation processes, and modification of energy transfer efficiencies occurring in the different cases. In all cages, except 2H-L-2H, the coordination of four Ag(I) ions to the lateral triazole groups of the linkers leads to the enlargement of their cavity. Only for 2H-L-2H is a different behavior observed, where the process of silver metalation of the porphyrins' core prevails.


Assuntos
Porfirinas , Triazóis , Íons , Porfirinas/química , Análise Espectral
11.
J Chem Phys ; 156(4): 044506, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105084

RESUMO

We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.

12.
J Chem Phys ; 155(10): 104502, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525825

RESUMO

The most intriguing hypothesis explaining many water anomalies is a metastable liquid-liquid phase transition (LLPT) at high pressure and low temperatures, experimentally hidden by homogeneous nucleation. Recent infrared spectroscopic experiments showed that upon addition of hydrazinium trifluoroacetate to water, the supercooled ionic solution undergoes a sharp, reversible LLPT at ambient pressure, possible offspring of that in pure water. Here, we calculate the temperature-dependent signature of the OH-stretching band, reporting on the low/high density phase of water, in neat water and in the same experimentally investigated ionic solution. The comparison between the infrared signature of the pure liquid and that of the ionic solution can be achieved only computationally, providing insight into the nature of the experimentally observed phase transition and allowing us to investigate the effects of ionic compounds on the high to low density supercooled liquid water transition. We show that the experimentally observed crossover behavior in the ionic solution can be reproduced only if the phase transition between the low- and high-density liquid states of water is coupled to a mixing-unmixing transition between the water component and the ions: at low temperatures, water and ions are separated and the water component is a low density liquid. At high temperatures, water and ions get mixed and the water component is a high-density liquid. The separation at low temperatures into ion-rich and ion-poor regions allows unveiling the polyamorphic nature of liquid water, leading to a crossover behavior resembling that observed in supercooled neat water under high pressure.

13.
J Phys Chem Lett ; 12(36): 8777-8783, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34491750

RESUMO

Antifreeze proteins (AFPs) can bind to ice nuclei thereby inhibiting their growth and their hydration shell is believed to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of four moderately-active and four hyperactive AFPs. The local water density around the ice-binding-surface (IBS) is found to be lower than that around the non-ice-binding surface (NIBS) and this difference correlates with the higher hydrophobicity of the former. While the water-density increase (with respect to bulk) around the IBS is similar between moderately-active and hyperactive AFPs, it differs around the NIBS, being higher for the hyperactive AFPs. We hypothesize that while the lower water density at the IBS can pave the way to protein binding to ice nuclei, irrespective of the antifreeze activity, the higher density at the NIBS of the hyperactive AFPs contribute to their enhanced ability in inhibiting ice growth around the bound AFPs.


Assuntos
Proteínas Anticongelantes/química , Proteínas de Bactérias/química , Aeromonadaceae/química , Basidiomycota/química , Cristalização , Granulovirus/química , Interações Hidrofóbicas e Hidrofílicas , Gelo , Isomerismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Propriedades de Superfície , Temperatura
14.
J Phys Chem Lett ; 12(17): 4195-4202, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33900080

RESUMO

The catalytic reaction in SARS-CoV-2 main protease is activated by a proton transfer (PT) from Cys145 to His41. The same PT is likely also required for the covalent binding of some inhibitors. Here we use a multiscale computational approach to investigate the PT thermodynamics in the apo enzyme and in complex with two potent inhibitors, N3 and the α-ketoamide 13b. We show that with the inhibitors the free energy cost to reach the charge-separated state of the active-site dyad is lower, with N3 inducing the most significant reduction. We also show that a few key sites (including specific water molecules) significantly enhance or reduce the thermodynamic feasibility of the PT reaction, with selective desolvation of the active site playing a crucial role. The approach presented is a cost-effective procedure to identify the enzyme regions that control the activation of the catalytic reaction and is thus also useful to guide the design of inhibitors.


Assuntos
Desenho de Fármacos , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteínas da Matriz Viral/antagonistas & inibidores , Antivirais/química , Antivirais/metabolismo , Biocatálise , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Humanos , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Prótons , Teoria Quântica , SARS-CoV-2/isolamento & purificação , Termodinâmica , Proteínas da Matriz Viral/metabolismo
15.
J Chem Phys ; 154(8): 084105, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639764

RESUMO

Infrared spectroscopy is a widely used technique to characterize protein structures and protein mediated processes. While the amide I band provides information on proteins' secondary structure, amino acid side chains are used as infrared probes for the investigation of protein reactions and local properties. In this paper, we use a hybrid quantum mechanical/classical molecular dynamical approach based on the perturbed matrix method to compute the infrared band due to the C=O stretching mode of amide-containing side chains. We calculate, at first, the infrared band of zwitterionic glutamine in water and obtain results in very good agreement with the experimental data. Then, we compute the signal arising from glutamine side chains in a microcrystal of the yeast prion Sup35-derived peptide, GNNQQNY, with a fibrillar structure. The infrared bands obtained by selective isotopic labeling of the two glutamine residues, Q4 and Q5, of each peptide were experimentally used to investigate the local hydration in the fibrillar microcrystal. The experimental spectra of the two glutamine residues, which experience different hydration environments, feature different spectral signals that are well reproduced by the corresponding calculated spectra. In addition, the analysis of the simulated spectra clarifies the molecular origin of the experimentally observed spectroscopic differences that arise from the different local electric field experienced by the two glutamine residues, which is, in turn, determined by a different hydrogen bonding pattern.


Assuntos
Amidas/química , Glutamina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação de Hidrogênio , Raios Infravermelhos , Marcação por Isótopo , Espectrofotometria Infravermelho , Água/química
16.
Chem Sci ; 12(4): 1513-1527, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35356437

RESUMO

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

17.
ChemRxiv ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200115

RESUMO

In this comutational work a hybrid quantum mechanics/molecular mechanics approach, the MD-PMM approach, is used to investigate the proton transfer reaction the activates the catalytic activity of SARS-CoV-2 main protease. The proton transfer thermodynamics is investigated for the apo ensyme (i.e., without any bound substrate or inhibitor) and in the presence of a inhibitor, N3, which was previously shown to covalently bind SARS-CoV-2 main protease.

18.
bioRxiv ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32935106

RESUMO

The main protease (M pro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M pro , a cysteine protease, have been determined, facilitating structure-based drug design. M pro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, M pro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nu-cleophile Cys145 have been debated in previous studies of SARS-CoV M pro , but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 M pro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of M pro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α -ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α -ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 M pro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

19.
Phys Chem Chem Phys ; 22(35): 19975-19981, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32857091

RESUMO

We investigate the coupling between the proton transfer (PT) energetics and the protein-solvent dynamics using the intra-molecular PT in wild type (wt) human carbonic anhydrase II and its ten-fold faster mutant Y7F/N67Q as a test case. We calculate the energy variation upon PT, and from that we also calculate the PT reaction free energy, making use of a hybrid quantum mechanics/molecular dynamics approach. In agreement with the experimental data, we obtain that the reaction free energy is basically the same in the two systems. Yet, we show that the instantaneous PT energy is on average lower in the mutant possibly contributing to the faster PT rate. Analysis of the contribution to the PT energetics of the solvent and of each protein residue, also not in the vicinity of the active site, provides evidence for electrostatic tuning of the PT energy arising from the combined effect of the solvent and the protein environment. These findings open up a way to the more general task of the rational design of mutants with either enhanced or reduced PT rate.


Assuntos
Anidrase Carbônica II/química , Prótons , Anidrase Carbônica II/genética , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Teoria Quântica , Termodinâmica
20.
Chemistry ; 26(72): 17514-17524, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845572

RESUMO

The complexation processes of N,N'-dibutyl-1,4,5,8-naphthalene diimide (NDI) into two types of π-electron-rich molecular containers consisting of two Zn(II)-porphyrins connected by four flexible linkers of two different lengths, were characterized by means of absorption and emission spectroscopies and molecular dynamics simulation. Notably, the addition of NDI leads to a strong quenching of the fluorescence of both cages only when they are in an open conformation suitable for guest encapsulation, a situation triggered by silver(I) ions binding to the lateral triazoles. Molecular dynamics simulations confirm the fast binding of NDI, likely assisted by NDI-silver(I) interactions. Upon NDI complexation, the two porphyrin macrocycles get closer, with an optimized face to face orientation, suggesting an induced-fit mechanism through π-π interactions with the NDI aromatic cycle. Ultrafast transient absorption experiments allowed to identify the process of quenching of the Zn-porphyrin fluorescence as an efficient photoinduced electron transfer reaction between the cage porphyrin and the included NDI guest. The process occurs on fast and ultrafast time scales in the two complexes (1.5 ps and ≤300 fs) leading to a short-lived charge separated state (charge recombination lifetimes in the order of 30-40 ps). The combined computational and experimental approach used here is able to furnish a reliable model of the NDI-cage complexation mechanism and of the corresponding electron transfer reaction, attesting the allosteric control of both processes by the silver(I) ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...