Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1336911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966141

RESUMO

One of the most crucial steps in the practical conservation of endangered endemic mountain plants is to address their population size status and habitat requirements concurrently with understanding their response to future global warming. Three endangered Silene species-Silene leucophylla Boiss., S. schimperiana Boiss., and S. oreosinaica Chowdhuri-in Egypt were the focus of the current study. These species were examined for population status change, habitat quality variables (topography, soil features, and threats), and predictive current and future distributions. To find population size changes, recent field surveys and historical records were compared. Using Random Forest (RF) and Canonical Correspondence Analysis (CCA), habitat preferences were assessed. To forecast present-day distribution and climate change response, an ensemble model was used. The results reported a continuous decline in the population size of the three species. Both RF and CCA addressed that elevation, soil texture (silt, sand, and clay fractions), soil moisture, habitat-type, chlorides, electric conductivity, and slope were among the important variables associated with habitat quality. The central northern sector of the Saint Catherine area is the hotspot location for the predictive current distribution of three species with suitable areas of 291.40, 293.10, and 58.29 km2 for S. leucophylla, S. schimperiana, and S. oreosinaica, respectively. Precipitation-related variables and elevation were the key predictors for the current distribution of three Silene species. In response to climate change scenarios, the three Silene species exhibited a gradual contraction in the predictive suitable areas with upward shifts by 2050 and 2070. The protection of these species and reintroduction to the predicted current and future climatically suitable areas are urgent priorities. Ex-situ conservation and raised surveillance, as well as fenced enclosures may catapult as promising and effective approaches to conserving such threatened species.

2.
Sci Rep ; 12(1): 22418, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575208

RESUMO

A fundamental goal of ecologists is to determine the large-scale gradients in species richness. The threatened plants are the priority of such studies because of their narrow distribution and confinement to a specific habitat. Studying the distribution patterns of threatened plants is crucial for identifying global conservation prioritization. In this study, the richness pattern of threatened plant species along spatial and elevation gradients in Sichuan Province of China was investigated, considering climatic, habitat-heterogeneity (HHET), geometric constraint and human-induced factors. The species richness pattern was analyzed, and the predictor variables, including mean annual temperature (MAT), mean annual precipitation (MAP), potential evapotranspiration (PET), HHET, and disturbance (DIST), to species richness were linked using the geographical distribution data of threatened species compiled at a spatial resolution of 20 km × 20 km. Generalized linear models and structural equation modelling were used to determine the individual and combined effects of each variable on species richness patterns. Results showed a total of 137 threatened plant species were distributed between 200 and 4800 m.a.s.l. The central region of the province harbors the highest species diversity. MAP and PET profoundly explained the richness pattern. Moreover, the significant role of DIST in the richness patterns of threatened plants was elucidated. These findings could help determine the richness pattern of threatened plant species in other mountainous regions of the world, with consideration of the impact of climate change.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Plantas , Chuva , China , Ecossistema , Geografia
3.
Sci Rep ; 12(1): 13199, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915116

RESUMO

Juniperus phoenicea is a medicinal conifer tree species distributed mainly in the Mediterranean region, and it is IUCN Red Listed species, locally threatened due to arid conditions and seed over-collection for medicinal purposes, particularly in the East-Mediterranean region. Several studies have addressed the potential distribution of J. phoenicea using bioclimatic and topographic variables at a local or global scale, but little is known about the role of soil and human influences as potential drivers. Therefore, our objectives were to determine the most influential predictor factors and their relative importance that might be limiting the regeneration of J. phoenicea, in addition, identifying the most suitable areas which could be assumed as priority conservation areas. We used ensemble models for species distribution modelling. Our findings revealed that aridity, temperature seasonality, and clay content are the most important factors limiting the potential distribution of J. phoenicea. Potentially suitable areas of the output maps, in which J. phoenicea populations degraded, could be assumed as decision-support tool reforestation planning. Other suitable areas, where there was no previous tree cover are a promising tool for afforestation and conservation planning. Finally, conservation actions are needed for natural habitats, particularly in the arid and semi-arid regions, which are highly threatened by global warming.


Assuntos
Juniperus , Argila , Conservação dos Recursos Naturais , Ecossistema , Humanos , Região do Mediterrâneo , Árvores
4.
Sci Rep ; 12(1): 8223, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581245

RESUMO

Drainage water in developing countries has a high abundance of pathogenic bacteria and high levels of toxic and mutagenic pollutants. Remediation of drainage water is important in water-poor counties, especially with the growing need to secure sustainability of safe water resources to fulfill increasing demands for agriculture. Here, we assess the efficiency of macrophyte Pistia stratiotes to remediate a polluted drain in Egypt, rich in macronutrients, heavy metals, and different types of pathogenic and non-pathogenic bacteria. Drainage water was sampled monthly, for a year, to assess seasonal changes in bacterial abundance, water physicochemical properties (transparency, temperature, dissolved oxygen, EC, pH, N, P, and K), and heavy metals contents (Pb, Zn, and Co) in a polluted drain dominated with P. stratiotes. The ability of P. stratiotes to rhizofiltrate the three heavy metals was calculated. The results showed seasonal variations in the plant rhizofiltration potential of Co and Salmonella abundance. The highest values of dissolved oxygen (12.36 mg/L) and macronutrient elements (N and P) were attained in the winter. The counts of total coliform, fecal coliform, fecal streptococci, and in Salmonella spp. were the highest in the summer. P. stratiotes accumulated Pb more than Zn and Co. The highest levels of rhizofiltration were in summer for Pb and Co and in the autumn for Zn. Canonical correspondence analysis (CCA) showed that the variation in the bacterial abundance and plant rhizofiltration potential was strongly and significantly affected by water-dissolved oxygen. Moreover, the rhizofiltration potential of Pb and Co showed a positive correlation with water N. Overall, P. stratiotes could be proposed as a potential biomonitor for heavy metals in polluted water.


Assuntos
Hydrocharitaceae , Metais Pesados , Poluentes Químicos da Água , Bactérias , Biodegradação Ambiental , Drenagem , Chumbo/análise , Metais Pesados/análise , Oxigênio/análise , Água/análise , Poluentes Químicos da Água/análise
5.
Plants (Basel) ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34451564

RESUMO

Urban areas are being affected by rapidly increasing human-made pressures that can strongly homogenize biodiversity, reduce habitat heterogeneity, and facilitate the invasion of alien species. One of the key concerns in invaded urban areas is comparing the trait-environment relationships between alien and native species, to determine the underlying causes of invasiveness. In the current study, we used a trait-environment dataset of 130 native plants and 33 alien plants, recorded in 100 plots covering 50 urban areas and 50 non-urban ones in an urbanization gradient in the arid mountainous Saint-Katherine protected area in Egypt. We measured eleven morphological plant traits for each plant species and ten environmental variables in each plot, including soil resources and human-made pressures, to construct trait-environment associations using a fourth-corner analysis. In addition, we measured the mean functional and phylogenetic distances between the two species groups along an urbanization gradient. Our results revealed strongly significant relationships of alien species traits with human-made pressures and soil resources in urban areas. However, in non-urban areas, alien species traits showed weak and non-significant associations with the environment. Simultaneously, native plants showed consistency in their trait-environment relationships in urban and non-urban areas. In line with these results, the functional and phylogenetic distances declined between the aliens and natives in urban areas, indicating biotic homogenization with increasing urbanization, and increased in non-urban areas, indicating greater divergence between the two species groups. Thereby, this study provided evidence that urbanization can reveal the plasticity of alien species and can also be the leading cause of homogenization in an arid urban area. Future urban studies should investigate the potential causes of taxonomic, genetic, and functional homogenization in species composition in formerly more diverse urbanized areas.

6.
Biology (Basel) ; 10(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203088

RESUMO

The current study addressed the heavy metals accumulation potentials of seven perennial aquatic macrophytes (Cyperus alopecuroides, Echinochloa stagnina, Eichhornia crassipes, Ludwigia stolonifera, Phragmites australis, Ranunculus sceleratus and Typha domingensis) and the pollution status of three drains (Amar, El-Westany and Omar-Beck) in the Nile Delta of Egypt. Nine sites at each drain were sampled for sediment and plant analyses. Concentrations of eight metals (Fe, Cu, Zn, Mn, Co, Cd, Ni, and Pb) were determined in the sediment and the aboveground and belowground tissues of the selected macrophytes. Bioaccumulation factor (BF) and translocation factor (TF) were computed for each species. The sediment heavy metals concentrations of the three drains occurred in the following order: El-Westany > Amar > Omar-Beck. The concentrations of sediment heavy metals in the three drains were ordered as follows: Fe (438.45-615.17 mg kg-1) > Mn (341.22-481.09 mg kg-1) > Zn (245.08-383.19 mg kg-1) > Cu (205.41-289.56 mg kg-1) > Pb (31.49-97.73 mg kg-1) > Cd (13.97-55.99 mg kg-1) > Ni (14.36-39.34 mg kg-1) > Co (1.25-3.51 mg kg-1). The sediment exceeded the worldwide permissible ranges of Cu, Zn and Pb, but ranged within safe limits for Mn, Cd, Ni and Co. P. australis accumulated the highest concentrations of Fe, Co, Cd and Ni, while E. crassipes contained the highest concentrations of Cu, Zn, Mn, and Pb. Except for C. alopecuroides and Cu metal, the studied species had BF values greater than one for the investigated heavy metals. Nevertheless, the TFs of all species (except Cd in L. stolonifera) were less than one. Hence, the studied species are appropriate for accumulation, biomonitoring, and phytostabilization of the investigated metals.

7.
Plants (Basel) ; 10(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806408

RESUMO

Arid coastal habitats are stressful regions subjected to the effects of biotic and abiotic factors. Vascular plants in these habitats display different responses to cope with these environmental fluctuations. This work addressed the morpho-anatomical features and chemical responses of two medicinal vascular plant species Artemisia monosperma Delile and Limbarda crithmoides (L.) Dumort., growing naturally along the Mediterranean coast of Egypt. Soil properties (physical and chemical), morpho-anatomical features and chemical constituents (secondary metabolites, antioxidant activity and essential oils) for the two species were performed. Our results displayed that both species are surviving where soils are alkaline, high saline with low moisture and organic carbon. The morphology of both species appeared woody low shrub with fleshy leaves. The most marked anatomical attributes were the thick cuticle of the epidermal layer in leaves and stems, compact palisade cells and abundant idioblasts (secretory ducts, phenolic compounds and calcium oxalate). Also, sclerenchymatous pericycle fibers in stem and glandular trichomes on the leaf had appeared in A. monosperma. Both plants exhibited a considerable content of phenolics, flavonoids, tannins, alkaloids and antioxidant activity with a higher level in A. monosperma than L. crithmoides. The leaf extracts of both plants showed higher values than the stem extracts. The sesquiterpenes group were the major identified compounds of the essential oils (EOs) in A. monosperma and L. crithmoides, and the majority were oxygenated sesquiterpenes with percentages of 42.63% and 51.49%, respectively. The second major group of EOs was monoterpenes, which were represented in A. monosperma in concentrations (34.04%) much higher than those recorded in L. crithmoides (4.97%). Exploring the local adaptation mechanism used by the target plants helps us to understand how these plants can acclimatize to harsh conditions, and this provides critical insights into the protection and survival strategy of species under extreme conditions.

8.
Biology (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803081

RESUMO

Prosopis juliflora is one of the most problematic invasive trees in tropical and subtropical regions. Understanding driving forces affecting the potential global distribution would help in managing its current and future spread. The role of climate on the global spatial distribution of P. juliflora has been well studied, but little is known about the role of soil and human impacts as potential drivers. Here, we used maximum entropy (MaxEnt) for species distribution modelling to understand the role of climate (C), soil (S) and human impacts (H), C+S, and C+S+H in controlling the potential invasion range of P. juliflora, and to project its global potential invasive risk. We defined the top threatened global biomes, as predicted by the best-selected model. The incorporation of the edaphic factors improved the model performance and enhanced the accuracy of the outcome. Our findings revealed that the potential invasion risk increases with increases in mean temperature of the driest quarter (Bio9), soil alkalinity and clay fractions. Arid and semi-arid lands are at the highest risk of invasion than other moist biomes.

9.
Biology (Basel) ; 10(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477312

RESUMO

Climate change is an important driver of biodiversity loss and extinction of endemic montane species. In China, three endemic Juniperus spp. (Juniperus pingii var. pingii, J. tibetica, and J. komarovii) are threatened and subjected to the risk of extinction. This study aimed to predict the potential distribution of these three Juniperus species under climate change and dispersal scenarios, to identify critical drivers explaining their potential distributions, to assess the extinction risk by estimating the loss percentage in their area of occupancy (AOO), and to identify priority areas for their conservation in China. We used ensemble modeling to evaluate the impact of climate change and project AOO. Our results revealed that the projected AOOs followed a similar trend in the three Juniperus species, which predicted an entire loss of their suitable habitats under both climate and dispersal scenarios. Temperature annual range and isothermality were the most critical key variables explaining the potential distribution of these three Juniperus species; they contribute by 16-56.1% and 20.4-38.3%, respectively. Accounting for the use of different thresholds provides a balanced approach for species distribution models' applications in conservation assessment when the goal is to assess potential climatic suitability in new geographical areas. Therefore, south Sichuan and north Yunnan could be considered important priority conservation areas for in situ conservation and search for unknown populations of these three Juniperus species.

10.
Ecol Evol ; 10(17): 9474-9485, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953076

RESUMO

Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large-scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human-induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human-induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy-water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy-water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.

11.
Plants (Basel) ; 9(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751359

RESUMO

Knowledge about population attributes, current geographic distribution, and changes over predicted climate change for many threatened endemic vascular plants is particularly limited in arid mountain environments. Primula boveana is one of the rarest and threatened plants worldwide, surviving exclusively in Saint Catherine Protectorate in the Sinaic biogeographic subsector of Egypt. This study aimed to define the current state of P. boveana populations, predict its current potential distribution, and use the best-model outputs to guide in field sampling and to forecast its future distribution under two climate change scenarios. The MaxEnt algorithm was used by relating 10 occurrence-points with different environmental predictors (27 bioclimatic, 3 topographic, and 8 edaphic factors). At the current knowledge level, the population size of P. boveana consists of 796 individuals, including 137 matures, distributed in only 250 m2. The Canonical Correlation Analysis (CCorA) displayed that population attributes (density, cover, size index, and plant vigor) were positively correlated with elevation, precipitation, and pH. Based on the best-fitting model, most predicted suitable central sites (69 km2) of P. boveana were located in the cool shaded high-elevated middle northern part of St. Catherine. Elevation, precipitation, temperature, and soil pH were the key contributors to P. boveana distribution in Egypt. After field trips in suitable predicted sites, we confirmed five extinct localities where P. boveana has been previously recorded and no new population was found. The projected map showed an upward range shift through the contraction of sites between 1800 and 2000 m and expansion towards high elevation (above 2000 m) at the southern parts of the St. Catherine area. To conserve P. boveana, it is recommended to initiate in situ conservation through reinforcement and reintroduction actions.

12.
Plants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422935

RESUMO

Understanding the pattern of species distribution and the underlying mechanism is essential for conservation planning. Several climatic variables determine the species diversity, and the dependency of species on climate motivates ecologists and bio-geographers to explain the richness patterns along with elevation and environmental correlates. We used interpolated elevational distribution data to examine the relative importance of climatic variables in determining the species richness pattern of 26 species of gymnosperms in the longest elevation gradients in the world. Thirteen environmental variables were divided into three predictors set representing each hypothesis model (energy-water, physical-tolerance, and climatic-seasonality); to explain the species richness pattern of gymnosperms along the elevational gradient. We performed generalized linear models and variation partitioning to evaluate the relevant role of environmental variables on species richness patterns. Our findings showed that the gymnosperms' richness formed a hump-shaped distribution pattern. The individual effect of energy-water predictor set was identified as the primary determinant of species richness. While, the joint effects of energy-water and physical-tolerance predictors have explained highest variations in gymnosperm distribution. The multiple environmental indicators are essential drivers of species distribution and have direct implications in understanding the effect of climate change on the species richness pattern.

13.
Environ Sci Pollut Res Int ; 27(7): 7040-7052, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31883073

RESUMO

Land use/land cover (LULC) changes impact the structure and functioning of ecosystems, which consequently influences the provisioning of a range of ecosystem services (ES). There is a growing consensus regarding the merit of integrating the evaluation of ES into regional policy planning. The Yangtze River is the world's third longest and supports more than 6% of its population. However, assessing the potential impacts of different resource management policies upon ES is complicated in the Yangtze basin. To remedy this, here we designed a scenario analysis-based approach that used remotely sensed data and GIS (geographic information system) to analyze the relationships between ES (i.e., water flow regulation, water purification) and policies envisioned to improve human welfare in the Chongqing municipality, in the upper reaches of the Three Gorges Reservoir Area (TGRA) in the Yangtze basin. This watershed area has high population density and suffers from severe flood hazard and critical pollution issues. The GEOMOD modeling technique was used to predict LULC changes according to policy planning alternatives, producing scenarios by 2050 for the TGRA watershed. The GIS-based ES model (InVEST model) was developed as a tool to inform the decision-making process with the intention of aligning conservation measures with economic development. We examine policy effectiveness by comparing three scenarios for 2050: scenario-1 maintains the current policy, with no considerations of ES; scenario-2 integrates ES into policy planning; and scenario-3 integrates ES into policy planning considering the needs of local people. Our scenario-based LULC change analysis showed that the land with large increases in water flow regulation (i.e., values ≤-3000 × 103 m3 km-2) were scattered over the entire study area, while phosphorus reduction (i.e., values ≤ -30 kg km-2) were located mainly along rivers in all scenarios. Scenario-2 and scenario-3 are based on policies aiming at enhancing ES provisioning; for these, the projected ecological risks of water pollution are significantly reduced (39.97% and 37.58%, respectively). Total net changes of the investigated ES under scenario-2 or scenario-3 were almost double that occurring under scenario-1. Although scenario-2 and scenario-3 showed a near-equal total net change, water purification under scenario-2 was the greatest relative to forest expansion. However, scenario-3 offered the best future environmental development scenario, as it accounted for the demand and supply characteristics of water yield and purification in different regions. The water purification service made the greatest contribution to positive and negative effects (26%-47% and -7%, respectively) on ES provisioning. Linking water purification service to policy planning would effectively improve the overall ES. These scenario forecasting results will help the Three Gorges Dam to gain more ecological benefits via improvements to water flow regulation and the effective alleviation of degraded water quality in heavily populated regions in the Yangtze basin.


Assuntos
Ecossistema , Rios , China , Humanos , Rios/química , Água , Poluição da Água/análise
14.
Ecol Evol ; 9(24): 14295-14316, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938520

RESUMO

Understanding the factors driving the Quaternary distribution of Abies in the Tibetan Plateau (TP) is crucial for biodiversity conservation and for predicting future anthropogenic impacts on ecosystems. Here, we collected Quaternary paleo-, palynological, and phylogeographical records from across the TP and applied ecological niche models (ENMs) to obtain a profound understanding of the different adaptation strategies and distributional changes in Abies trees in this unique area. We identified environmental variables affecting the different historical biogeographies of four related endemic Abies taxa and rebuilt their distribution patterns over different time periods, starting from the late Pleistocene. In addition, modeling and phylogeographic results were used to predict suitable refugia for Abies forrestii, A. forrestii var. georgei, A. fargesii var. faxoniana, and A. recurvata. We supplemented the ENMs by investigating pollen records and diversity patterns of cpDNA for them. The overall reconstructed distributions of these Abies taxa were dramatically different when the late Pleistocene was compared with the present. All Abies taxa gradually receded from the south toward the north in the last glacial maximum (LGM). The outcomes showed two well-differentiated distributions: A. fargesii var. faxoniana and A. recurvata occurred throughout the Longmen refuge, a temporary refuge for the LGM, while the other two Abies taxa were distributed throughout the Heqing refuge. Both the seasonality of precipitation and the mean temperature of the driest quarter played decisive roles in driving the distribution of A. fargesii var. faxoniana and A. recurvata, respectively; the annual temperature range was also a key variable that explained the distribution patterns of the other two Abies taxa. Different adaptation strategies of trees may thus explain the differing patterns of distribution over time at the TP revealed here for endemic Abies taxa.

15.
Physiol Plant ; 166(4): 894-908, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30414178

RESUMO

Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well-watered and water-stressed) and phosphorus (P) applications (with and without P) on the morphological and physio-biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn ), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over-production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well-watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought-stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn , quantum efficiency of photosystem II (Fv /Fm ), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well-watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.


Assuntos
Eucalyptus/efeitos dos fármacos , Eucalyptus/metabolismo , Fósforo/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Clorofila/metabolismo , Secas , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Ecotoxicol Environ Saf ; 164: 164-171, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30107326

RESUMO

Polybrominated diphenyl ethers (PBDEs) are extremely incessant anthropogenic contaminants found in the environment, with dreadful risk to aquatic ecosystems. However, there is a limited amount of data concerning their impacts on freshwater organisms. 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) are significant components of total PBDEs in water. The sublethal effects of BDE-47, BDE-209 and their binary mixtures on the aquatic organism Daphnia magna were investigated in acute and chronic exposure experiments. Immobilization and heartbeat were studied in daphnids after 48 h of exposure. Mortality rate, breed number, Cholinesterase (ChE), Glutathione S-transferases (GST) and Catalase (CAT) activities were evaluated after 21 days of exposure. The results showed that at 100 and 200 µg/L concentration of BDE-47, immobilization rate of daphnids were inhibited by 44.0 ±â€¯16.7% and 88.0 ±â€¯10.9%, respectively. The binary mixture of BDE-47 and BDE-209 had uncongenial effects on immobilization of D. magna under acute toxicity test. BDE-209 significantly increased the heartbeat rate of daphnids, which increased even further when combined with BDE-47. After 21 days of exposure, daphnids exposed to single BDE-47 were physiologically altered. The combination of BDE-47 with BDE-209 significantly decreased the mortality rate of daphnids. Irrespective of the concentration, higher numbers of offsprings were produced in the mixtures compared to BDE-47 treatment alone. ChE activities significantly (p < 0.05) decreased at concentrations of 2 and 4 µg/L in single BDE-47 treatment, while GST activity significantly (p < 0.05) decreased at 0.5 µg/L. CAT activities significantly increased with BDE-47 treatments in all the tested concentrations (p < 0.05). The mixtures significantly affect ChE (p < 0.05), GST (p < 0.05) and CAT activities (p < 0.05). The results illustrated that the toxicity of the mixture of PBDE congeners exposed to aquatic organisms may have antagonistic effects. The 21 days chronic test in this study suggests that acute toxicity tests, i.e. 48-h tests, using Daphnia may lead to underestimation of risks associated with PBDEs, especially, BDE-209. Hence, there is a necessity to re-examine PBDE congeners' environmental risk in aquatic organisms.


Assuntos
Biomarcadores/metabolismo , Daphnia/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Catalase/metabolismo , Colinesterases/metabolismo , Daphnia/metabolismo , Glutationa Transferase/metabolismo , Éteres Difenil Halogenados/análise , Frequência Cardíaca/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/análise
17.
Int J Phytoremediation ; 20(5): 440-447, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29053352

RESUMO

The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.


Assuntos
Araceae , Metais Pesados/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Egito , Poluição da Água , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA