Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 347: 54-59, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29609001

RESUMO

Functionalization of single-walled carbon nanotubes (SWCNT) with polyethylene glycol (PEG) is among the most promising strategies to avoid SWCNT aggregation in aqueous media, improving its interactions with biological systems. However, the best molecular PEG weight and functionalization strategy remain under investigation. In this work we assessed the toxicological effects of SWCNT functionalized with PEG at 600 Da in zebrafish embryos. Embryos were exposed to SWCNT at 0.01, 0.1 and 1 mg/L from 3 to 96 h post-fertilization (hpf). At the highest concentration, SWCNT led to toxic effects at several endpoints, including mortality, delayed hatching, malformations, reduced body length, increased ROS production and DNA damage. Even with these effects, SWCNT could not be detected within the bodily tissues of the larvae. Our results give evidence that the tested PEGylation approach was unsuitable to avoid SWCNT aggregation in aqueous media, and that SWCNT can induce toxicity even without being absorbed by the organism by obstructing the chorion pores.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Polietilenoglicóis/toxicidade , Toxicologia/métodos , Peixe-Zebra/embriologia , Animais , Dano ao DNA , Relação Dose-Resposta a Droga , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/metabolismo , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
2.
CNS Neurol Disord Drug Targets ; 16(9): 983-989, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28758581

RESUMO

BACKGROUND AND OBJECTIVE: In this mini-review, we have compiled the most recent and comparable information to shed light on the action of PEGylation in the biodistribution of carbon nanotubes (CNT) in the central nervous system (CNS). It is well known that due to the complexity of the CNS and the severity of the outcome following changes in this system, this is one of the areas where there are more investments in research to develop new technologies and approaches for more effective and less invasive treatments. The CNS is highly protected against toxic and invasive microorganisms thanks to the blood brain barrier (BBB), but this protection also prevents the passage of potentially beneficial molecules for the treatment of neurological disorders. Nanotechnology attempts to develop nanocompounds that are biocompatible and non-immunogenic, and that are able to cross the BBB in therapeutic amounts without causing damage and to diffuse through nerve tissue. These compounds should also be cleared and biodistributed properly, being capable of performing drug delivery exclusively for CNS pathologies, such as neurodegenerative diseases (Parkinson's and Alzheimer's) and brain tumors. CONCLUSION: In this way, this review focuses on CNT PEGylation, aiming to help in the development of viable and effective nanomedicines for neuroscience applications.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Nanotubos de Carbono , Polietilenoglicóis/metabolismo , Distribuição Tecidual/fisiologia , Animais , Barreira Hematoencefálica/fisiologia , Humanos , Nanotecnologia
3.
J Appl Toxicol ; 37(2): 214-221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27320845

RESUMO

Single-wall carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) are promising materials for biomedical applications such as diagnostic devices and controlled drug-release systems. However, several questions about their toxicological profile remain unanswered. Thus, the aim of this study was to investigate the action of SWCNT-PEG in Danio rerio zebrafish embryos at the molecular, physiological and morphological levels. The SWCNT used in this study were synthesized by the high-pressure carbon monoxide process, purified and then functionalized with distearoyl phosphatidylethanolamine block copolymer-PEG (molecular weight 2 kDa). The characterization process was carried out with low-resolution transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. Individual zebrafish embryos were exposed to the SWCNT-PEG. Toxic effects occurred only at the highest concentration tested (1 ppm) and included high mortality rates, delayed hatching and decreased total larval length. For all the concentrations tested, the alkaline comet assay revealed no genotoxicity, and Raman spectroscopy measurements on the histological slices revealed no intracellular nanotubes. The results shown here demonstrate that SWCNT-PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved. However, the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed, because the purification process was not able to remove all metal contamination, as demonstrated by the thermogravimetric analysis. More attention must be given to the toxicity of these nanomaterials before they are used in biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Polietilenoglicóis/toxicidade , Peixe-Zebra , Animais , Dano ao DNA , Relação Dose-Resposta a Droga , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Frequência Cardíaca/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nanotubos de Carbono/química , Polietilenoglicóis/química , Propriedades de Superfície , Análise de Sobrevida , Peixe-Zebra/embriologia
4.
PLoS One ; 10(6): e0129156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075787

RESUMO

Carbon nanotubes are promising nanomaterials for the diagnosis and treatment of brain disorders. However, the ability of these nanomaterials to cross cell membranes and interact with neural cells brings the need for the assessment of their potential adverse effects on the nervous system. This study aimed to investigate the biopersistence of single-walled carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) directly infused into the rat hippocampus. Contextual fear conditioning, Y-maze and open field tasks were performed to evaluate the effects of SWCNT-PEG on memory and locomotor activity. The effects of SWCNT-PEG on oxidative stress and morphology of the hippocampus were assessed 1 and 7 days after infusion of the dispersions at 0.5, 1.0 and 2.1 mg/mL. Raman analysis of the hippocampal homogenates indicates the biopersistence of SWCNT-PEG in the hippocampus 7 days post-injection. The infusion of the dispersions had no effect on the acquisition or persistence of the contextual fear memory; likewise, the spatial recognition memory and locomotor activity were not affected by SWCNT-PEG. Histological examination revealed no remarkable morphological alterations after nanomaterial exposure. One day after the infusion, SWCNT-PEG dispersions at 0.5 and 1.0 mg/mL were able to decrease total antioxidant capacity without modifying the levels of reactive oxygen species or lipid hydroperoxides in the hippocampus. Moreover, SWCNT-PEG dispersions at all concentrations induced antioxidant defenses and reduced reactive oxygen species production in the hippocampus at 7 days post-injection. In this work, we found a time-dependent change in antioxidant defenses after the exposure to SWCNT-PEG. We hypothesized that the persistence of the nanomaterial in the tissue can induce an antioxidant response that might have provided resistance to an initial insult. Such antioxidant delayed response may constitute an adaptive response to the biopersistence of SWCNT-PEG in the hippocampus.


Assuntos
Antioxidantes/metabolismo , Hipocampo/metabolismo , Nanotubos de Carbono , Estresse Oxidativo , Animais , Comportamento Animal , Glutamato-Cisteína Ligase , Glutationa , Hipocampo/patologia , Peroxidação de Lipídeos , Masculino , Nanotubos de Carbono/química , Polietilenoglicóis/química , Ratos , Espécies Reativas de Oxigênio
5.
Biomed Res Int ; 2015: 104135, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738149

RESUMO

Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.


Assuntos
Medo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Nanotubos de Carbono , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Wistar
6.
Toxicol Appl Pharmacol ; 280(3): 484-92, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25168427

RESUMO

Nanotechnology has been proven to be increasingly compatible with pharmacological and biomedical applications. Therefore, we evaluated the biological interactions of single-wall carbon nanotubes functionalized with polyethylene glycol (SWNT-PEG). For this purpose, we analyzed biochemical, histological, behavioral and biodistribution parameters to understand how this material behaves in vitro and in vivo using the fish Danio rerio (zebrafish) as a biological model. The in vitro results for fish brain homogenates indicated that SWNT-PEG had an effect on lipid peroxidation and GSH (reduced glutathione) content. However, after intraperitoneal exposure, SWNT-PEG proved to be less biocompatible and formed aggregates, suggesting that the PEG used for the nanoparticle functionalization was of an inappropriate size for maintaining product stability in a biological environment. This problem with functionalization may have contributed to the low or practically absent biodistribution of SWNT-PEG in zebrafish tissues, as verified by Raman spectroscopy. There was an accumulation of material in the abdominal cavity that led to inflammation and behavioral disturbances, as evaluated by a histological analysis and an open field test, respectively. These results provide evidence of a lack of biocompatibility of SWNTs modified with short chain PEGs, which leads to the accumulation of the material, tissue damage and behavioral alterations in the tested subjects.


Assuntos
Encéfalo/metabolismo , Nanotubos de Carbono/toxicidade , Polietilenoglicóis/farmacologia , Peixe-Zebra/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Glutationa/análise , Histocitoquímica , Masculino , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Distribuição Tecidual/fisiologia
7.
Brain Res Bull ; 80(6): 422-7, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19683561

RESUMO

Glutathione (GSH) is a major non-enzymatic antioxidant which is present in all tissues. Its protective actions occur through different pathways such its role as a substrate of antioxidant enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST). Nitric oxide (NO) is involved in many physiological processes in the central nervous system, including nociception. In spite of much evidence concerning oxidative and nitrosative stress and neuropathic pain, the exact role of these molecules in pain processing is still unknown. Sciatic nerve transection (SNT) was employed to induce neuropathic pain in rats. Glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities, glutathione (GSH) content, GSH/GSSG ratio, nitric oxide metabolites (NOx) and neuronal nitric oxide synthase (nNOS) protein expression in the lumbosacral spinal cord were determined. All of these analyses were performed in the SNT and sham groups 1, 3, 7 and 15 days after surgery. There was an increase in GPx activity and in GSH content 3 days after surgery in both sham and SNT groups, but the GSH/GSSG ratio increased only in the SNT group in this time point. nNOS expression was upregulated 7 days post SNT. NOx was detected 1 day after surgery in sham and SNT groups, but at 7 and 15 days, the increase occurred only in SNT animals. These results support the role of the gluthatione system in pain physiology and highlight the involvement of NO as an important molecule related to nociception.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Dor/metabolismo , Nervo Isquiático/lesões , Medula Espinal/metabolismo , Análise de Variância , Animais , Western Blotting , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Região Lombossacral , Masculino , Óxido Nítrico/metabolismo , Dor/enzimologia , Ratos , Ratos Wistar , Medula Espinal/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...