Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 883-889, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37817963

RESUMO

In the title mol-ecule, C14H11NO3, the di-hydro-quinoline core deviates slightly from planarity, indicated by the dihedral angle of 1.07 (3)° between the two six-membered rings. In the crystal, layers of mol-ecules almost parallel to the bc plane are formed by C-H⋯O hydro-gen bonds. These are joined by π-π stacking inter-actions. A Hirshfeld surface analysis revealed that the most important contributions to the crystal packing are from H⋯H (36.0%), H⋯C/C⋯H (28.9%) and H⋯O/O⋯H (23.5%) inter-actions. The evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the dispersion energy contribution. Moreover, the mol-ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311G(d,p) level is com-pared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

2.
J Phys Chem A ; 126(40): 7230-7241, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36178377

RESUMO

Two ketones of atmospheric interest, methyl glyoxal and methyl vinyl ketone, are studied using explicitly correlated coupled cluster theory and core-valence correlation-consistent basis sets. The work focuses on the far-infrared region. At the employed level of theory, the rotational constants can be determined to within a few megahertz of the experimental data. Both molecules present two conformers, trans/cis and antiperiplanar (Ap)/synperiplanar (Sp), respectively. trans-Methyl glyoxal and Ap-methyl vinyl ketone are the preferred structures. cis-Methyl glyoxal is a secondary minimum of very low stability, which justifies the unavailability of experimental data in this form. In methyl vinyl ketone, the two conformers are almost isoenergetic, but the interconversion implies a relatively high torsional barrier of 1798 cm-1. A very low methyl torsional barrier was estimated for trans-methyl glyoxal (V3 = 273.6 cm-1). Barriers of 429.6 and 380.7 cm-1 were computed for Ap- and Sp-methyl vinyl ketone. Vibrational second-order perturbation theory was applied to determine the rovibrational parameters. The far-infrared region was explored using a variational procedure of reduced dimensionality. For trans-methyl glyoxal, the ground vibrational state was estimated to split by 0.067 cm-1, and the two low excited energy levels (1 0) and (0 1) were found to lie at 89.588 cm-1/88.683 cm-1 (A2/E) and 124.636 cm-1/123.785 cm-1 (A2/E). For Ap- and Sp-methyl vinyl ketone, the ground vibrational state splittings were estimated to be 0.008 and 0.017 cm-1, respectively.

3.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 9): 953-960, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36072525

RESUMO

In the title mol-ecule, C7H6N4O3, the bicyclic ring system is planar with the carb-oxy-methyl group inclined by 81.05 (5)° to this plane. In the crystal, corrugated layers parallel to (010) are generated by N-H⋯O, O-H⋯N and C-H⋯O hydrogen-bonding inter-actions. The layers are associated through C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (34.8%), H⋯N/N⋯H (19.3%) and H⋯H (18.1%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated to be 176.30 Å3 and 10.94%, showing that there is no large cavity in the crystal packing. Computational methods revealed O-H⋯N, N-H⋯O and C-H⋯O hydrogen-bonding energies of 76.3, 55.2, 32.8 and 19.1 kJ mol-1, respectively. Evaluations of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via dispersion energy contributions. Moreover, the optimized mol-ecular structure, using density functional theory (DFT) at the B3LYP/6-311G(d,p) level, was compared with the experimentally determined one. The HOMO-LUMO energy gap was determined and the mol-ecular electrostatic potential (MEP) surface was calculated at the B3LYP/6-31G level to predict sites for electrophilic and nucleophilic attacks.

4.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 4): 425-432, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492275

RESUMO

In the title compound, C12H10ClNO3, the di-hydro-quinoline moiety is not planar with a dihedral angle between the two ring planes of 1.61 (6)°. An intra-molecular C-H⋯O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of mol-ecules parallel to (10) are generated by C-H⋯O and C-H⋯Cl hydrogen bonds, and are stacked through slipped π-stacking inter-actions between inversion-related di-hydro-quinoline units. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (34.2%), H⋯O/O⋯H (19.9%), H⋯Cl/Cl⋯H (12.8%), H⋯C/C⋯H (10.3%) and C⋯C (9.7%) inter-actions. Computational chemistry indicates that in the crystal, the C-H⋯Cl hydrogen-bond energy is -37.4 kJ mol-1, while the C-H⋯O hydrogen-bond energies are -45.4 and -29.2 kJ mol-1. An evaluation of the electrostatic, dispersion and total energy frameworks revealed that the stabilization is dominated via the dispersion energy contribution. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state, and the HOMO-LUMO behaviour was elucidated to determine the energy gap.

5.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299546

RESUMO

Torsional and rotational spectroscopic properties of pyruvic acid are determined using highly correlated ab initio methods and combining two different theoretical approaches: Second order perturbation theory and a variational procedure in three-dimensions. Four equilibrium geometries of pyruvic acid, Tc, Tt, Ct, and CC, outcome from a search with CCSD(T)-F12. All of them can be classified in the Cs point group. The variational calculations are performed considering the three internal rotation modes responsible for the non-rigidity as independent coordinates. More than 50 torsional energy levels (including torsional subcomponents) are localized in the 406-986 cm-1 region and represent excitations of the ν24 (skeletal torsion) and the ν23 (methyl torsion) modes. The third independent variable, the OH torsion, interacts strongly with ν23. The A1/E splitting of the ground vibrational state has been evaluated to be 0.024 cm-1 as it was expected given the high of the methyl torsional barrier (338 cm-1). A very good agreement with respect to previous experimental data concerning fundamental frequencies (νCAL - νEXP ~ 1 cm-1), and rotational parameters (B0CAL - B0EXP < 5 MHz), is obtained.

6.
Open Res Eur ; 1: 116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645120

RESUMO

Background: Acetone is present in the earth´s atmosphere and extra-terrestrially. The knowledge of its chemical history in these environments represents a challenge with important implications for global tropospheric chemistry and astrochemistry. The results of a search for efficient barrierless pathways producing acetone from radicals in the gas phase are described in this paper. The spectroscopic properties of radicals needed for their experimental detection are provided.   Methods: The reactants were acetone fragments of low stability and small species containing C, O and H atoms. Two exergonic bimolecular addition reactions involving the radicals CH 3, CH 3CO, and CH 3COCH 2, were found to be competitive according to the kinetic rates calculated at different temperatures. An extensive spectroscopic study of the radicals CH 3COCH 2 and CH 3CO, as well as the CH 2CHO isomer, was performed. Rovibrational parameters, anharmonic vibrational transitions, and excitations to the low-lying excited states are provided. For this purpose, RCCSD(T)-F12 and MRCI/CASSCF calculations were performed. In addition, since all the species presented non-rigid properties, a variational procedure of reduced dimensionality was employed to explore the far infrared region. Results: The internal rotation barriers were determined to be V 3=143.7 cm -1 (CH 3CO), V 2=3838.7 cm -1 (CH 2CHO) and V 3=161.4 cm -1 and V 2=2727.5 cm -1 (CH 3COCH 2).The splitting of the ground vibrational state due to the torsional barrier have been computed to be 2.997 cm -1, 0.0 cm -1, and 0.320 cm -1, for CH 3CO, CH 2CHO, and CH 3COCH 2, respectively. Conclusions: Two addition reactions, H+CH 3COCH 2 and CH 3+CH 3CO, could be considered barrierless formation processes of acetone after considering all the possible formation routes, starting from 58 selected reactants, which are fragments of the molecule. The spectroscopic study of the radicals involved in the formation processes present non-rigidity. The interconversion of their equilibrium geometries has important spectroscopic effects on CH 3CO and CH 3COCH 2, but is negligible for CH 2CHO.

7.
Phys Chem Chem Phys ; 21(7): 3597-3605, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30259017

RESUMO

The far infrared region of three detectable molecules sharing the empirical formula C3H3O2N, acetyl isocyanate CH3CONCO (AISO), methyl cyanoformate NC-COOCH3 (MCN) and acetyl cyanate CH3COOCN (ACN), is explored using explicitly correlated coupled cluster ab initio methods and a variational procedure designed for non-rigid species and large amplitude motions. The three isomeric forms display two conformers, cis and trans, of Cs symmetry that intertransform through the torsion of the central bond. This internal rotation interacts with the methyl group torsion generating a ground electronic state potential energy surface of six minima. Accurate rotational constants, centrifugal distortion constants, potential energy barriers, and surfaces, as well as, the low energy levels and their splittings, are provided. Far infrared energies are calculated up to 600 cm-1 which represent excitations of the torsional and the skeletal bending modes. Below 410 cm-1, 28, 14 and 20 vibrational energy levels and their splittings have been identified and classified for acetyl isocyanate, methyl cyanoformate, and acetyl cyanate, respectively. All the methyl torsion barriers are relatively low (∼300 cm-1) generating relevant tunneling effects. Computed spectroscopic parameters can help further interpretation and assignments of experimental rotational spectra using effective Hamiltonians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA