Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101971

RESUMO

Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.


Assuntos
Neoplasias Ósseas , Óxido Ferroso-Férrico/farmacologia , Imunoterapia Adotiva , Imageamento por Ressonância Magnética , Nanopartículas/uso terapêutico , Neoplasias Experimentais , Osteossarcoma , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/terapia , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/imunologia , Osteossarcoma/terapia
2.
Am J Sports Med ; 49(7): 1861-1870, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872071

RESUMO

BACKGROUND: The transplantation of mesenchymal stem cells (MSCs) into cartilage defects has led to variable cartilage repair outcomes. Previous in vitro studies have shown that ascorbic acid and reduced iron independently can improve the chondrogenic differentiation of MSCs. However, the combined effect of ascorbic acid and iron supplementation on MSC differentiation has not been investigated. PURPOSE: To investigate the combined in vivo effects of ascorbic acid and a US Food and Drug Administration (FDA)-approved iron supplement on MSC-mediated cartilage repair in mature Göttingen minipigs. STUDY DESIGN: Controlled laboratory study. METHODS: We pretreated bone marrow-derived MSCs with ascorbic acid and the FDA-approved iron supplement ferumoxytol and then transplanted the MSCs into full-thickness cartilage defects in the distal femurs of Göttingen minipigs. Untreated cartilage defects served as negative controls. We evaluated the cartilage repair site with magnetic resonance imaging at 4 and 12 weeks after MSC implantation, followed by histological examination and immunofluorescence staining at 12 weeks. RESULTS: Ascorbic acid plus iron-pretreated MSCs demonstrated a significantly better MOCART (magnetic resonance observation of cartilage repair tissue) score (73.8 ± 15.5), better macroscopic cartilage regeneration score according to the International Cartilage Repair Society (8.6 ± 2.0), better Pineda score (2.9 ± 0.8), and larger amount of collagen type II (28,469 ± 21,313) compared with untreated controls (41.3 ± 2.5, 1.8 ± 2.9, 12.8 ± 1.9, and 905 ± 1326, respectively). The obtained scores were also better than scores previously reported in the same animal model for MSC implants without ascorbic acid. CONCLUSION: Pretreatment of MSCs with ascorbic acid and an FDA-approved iron supplement improved the chondrogenesis of MSCs and led to hyaline-like cartilage regeneration in the knee joints of minipigs. CLINICAL RELEVANCE: Ascorbic acid and iron supplements are immediately clinically applicable. Thus, these results, in principle, could be translated into clinical applications.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Ácido Ascórbico/farmacologia , Diferenciação Celular , Condrogênese , Ferro , Suínos , Porco Miniatura
3.
Mol Imaging Biol ; 23(5): 625-638, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33903986

RESUMO

This paper summarizes the 2020 Diversity in Radiology and Molecular Imaging: What We Need to Know Conference, a three-day virtual conference held September 9-11, 2020. The World Molecular Imaging Society (WMIS) and Stanford University jointly organized this event to provide a forum for WMIS members and affiliates worldwide to openly discuss issues pertaining to diversity in science, technology, engineering, and mathematics (STEM). The participants discussed three main conference themes, "racial diversity in STEM," "women in STEM," and "global health," which were discussed through seven plenary lectures, twelve scientific presentations, and nine roundtable discussions, respectively. Breakout sessions were designed to flip the classroom and seek input from attendees on important topics such as increasing the representation of underrepresented minority (URM) members and women in STEM, generating pipeline programs in the fields of molecular imaging, supporting existing URM and women members in their career pursuits, developing mechanisms to effectively address microaggressions, providing leadership opportunities for URM and women STEM members, improving global health research, and developing strategies to advance culturally competent healthcare.


Assuntos
Diversidade Cultural , Liderança , Radiologia/organização & administração , Tecnologia Radiológica/organização & administração , Engenharia , Humanos , Grupos Minoritários , Imagem Molecular , Mulheres
4.
Nanotheranostics ; 4(4): 195-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637297

RESUMO

Recent evidence of gadolinium deposition in the brain has raised safety concerns. Iron oxide nanoparticles are re-emerging as promising alternative MR contrast agents, because the iron core can be metabolized. However, long-term follow up studies of the brain after intravenous iron oxide administration have not been reported thus far. In this study, we investigated, if intravenously administered ferumoxytol nanoparticles are deposited in porcine brains. Methods: In an animal care and use committee-approved prospective case-control study, ten Göttingen minipigs received either intravenous ferumoxytol injections at a dose of 5 mg Fe/kg (n=4) or remained untreated (n=6). Nine to twelve months later, pigs were sacrificed and the brains of all pigs underwent ex vivo MRI at 7T with T2 and T2*-weighted sequences. MRI scans were evaluated by measuring R2* values (R2*=1000/T2*) of the bilateral caudate nucleus, lentiform nucleus, thalamus, dentate nucleus, and choroid plexus. Pig brains were sectioned and stained with Prussian blue and evaluated for iron deposition using a semiquantitative scoring system. Data of ferumoxytol exposed and unexposed groups were compared with an unpaired t-test and a Mann-Whitney U test. Results: T2 and T2* signal of the different brain regions was not visually different between ferumoxytol exposed and unexposed controls. There were no significant differences in R2* values of the different brain regions in the ferumoxytol exposed group compared to controls (p>0.05). Prussian blue stains of the same brain regions, scored according to a semiquantitative score, were not significantly different either between the ferumoxytol exposed group and unexposed controls (p>0.05). Conclusions: Our study shows that intravenous ferumoxytol doses of 5-10 mg Fe/kg do not lead to iron deposition in the brain of pigs. We suggest iron oxide nanoparticles as a promising alternative for gadolinium-enhanced MRI.


Assuntos
Encéfalo , Meios de Contraste/farmacocinética , Óxido Ferroso-Férrico/farmacocinética , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Administração Intravenosa , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Óxido Ferroso-Férrico/administração & dosagem , Óxido Ferroso-Férrico/química , Estudos Prospectivos , Suínos , Porco Miniatura , Distribuição Tecidual
5.
Rofo ; 191(4): 357-366, 2019 04.
Artigo em Alemão | MEDLINE | ID: mdl-30897652

RESUMO

Significant changes can be expected in modern pediatric radiology. New imaging techniques are progressively added to basic modalities like Xrays and ultrasound. This essay summarizes recent advances and technical innovations in pediatric radiology, which are supposed to gain further importance in the future. Thus, CT dose reduction techniques including artificial intelligence as well as advances in the fields of magnetic resonance and molecular imaging are presented. KEY POINTS: · Technical innovations will lead to significant changes in pediatric radiology.. · CT dose reduction is crucial for pediatric patient collectives.. · New MR-techniques will lower the need for sedation and contrast media application.. · Functional MR-imaging might gain further importance in patients with chronic lung disease.. · Molecular imaging enables detection, characterization and quantification of molecular processes in tumors.. CITATION FORMAT: · Staatz G, Daldrup-Link HE, Herrmann J et al. From Xrays to PET/MR, and then? - Future imaging in pediatric radiology. Fortschr Röntgenstr 2019; 191: 357 - 366.


Assuntos
Imageamento por Ressonância Magnética/tendências , Pediatria/tendências , Tomografia por Emissão de Pósitrons/tendências , Radiografia/tendências , Radiologia/tendências , Criança , Previsões , Alemanha , Humanos
6.
Eur Radiol ; 28(1): 410-417, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28726121

RESUMO

OBJECTIVES: Corticosteroid treatment of paediatric leukaemia patients can lead to osteonecrosis (ON). We determined whether bone marrow oedema (BME) is an early sign of progressive ON and eventual bone collapse. METHODS: In a retrospective study, two radiologists reviewed MR imaging characteristics of 47 early stage epiphyseal ON in 15 paediatric and adolescent leukaemia patients. Associations between BME on initial imaging studies and subchondral fracture, disease progression and bone collapse were assessed by Cochran-Mantel-Haenszel tests. Differences in time to progression and bone collapse between lesions with and without oedema were assessed by log rank tests. RESULTS: Forty-seven occurrences of ON were located in weight bearing joints, with 77% occurring in the femur. Seventeen lesions progressed to collapse, two lesions worsened without collapse, and 28 remained stable or improved. BME was significantly associated with subchondral fracture (p = 0.0014), disease progression (p = 0.0015), and bone collapse (p < 0.001), with a sensitivity and specificity of 94% and 77%, respectively, for bone collapse. Time to progression for ON with oedema was 2.7 years (95% CI: 1.7-3.4); while the majority of no-oedema ON were stable (p = 0.0011). CONCLUSIONS: BME is an early sign of progressive ON and eventual bone collapse in paediatric and adolescent leukaemia patients. KEY POINTS: • Bone marrow oedema in corticosteroid-induced osteonecrosis predicts progression to bone collapse. • Bone marrow oedema is associated with subchondral fractures in corticosteroid-induced osteonecrosis. • Bone marrow oedema can be used to stratify patients to joint-preserving interventions. • Absence of bone marrow oedema can justify a "wait and watch" approach.


Assuntos
Doenças da Medula Óssea/patologia , Medula Óssea/patologia , Edema/patologia , Fraturas Espontâneas/etiologia , Glucocorticoides/efeitos adversos , Leucemia/complicações , Osteonecrose/induzido quimicamente , Adolescente , Doenças da Medula Óssea/complicações , Criança , Pré-Escolar , Progressão da Doença , Edema/complicações , Feminino , Fêmur/patologia , Fraturas Espontâneas/diagnóstico , Glucocorticoides/uso terapêutico , Humanos , Leucemia/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Masculino , Osteonecrose/complicações , Osteonecrose/diagnóstico , Prognóstico , Estudos Retrospectivos , Adulto Jovem
7.
Nat Nanotechnol ; 11(11): 986-994, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668795

RESUMO

Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.


Assuntos
Antineoplásicos/farmacologia , Óxido Ferroso-Férrico/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Feminino , Óxido Ferroso-Férrico/química , Humanos , Inflamação/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos Endogâmicos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...