Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7978): 312-317, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532941

RESUMO

The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.

2.
Nat Commun ; 14(1): 1676, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966137

RESUMO

Marine silicate alteration plays a key role in the global carbon and cation cycles, although the timeframe of this process in response to extreme weather events is poorly understood. Here we investigate surface sediments across the Peruvian margin before and after extreme rainfall and runoff (coastal El Niño) using Ge/Si ratios and laser-ablated solid and pore fluid Si isotopes (δ30Si). Pore fluids following the rainfall show elevated Ge/Si ratios (2.87 µmol mol-1) and δ30Si values (3.72‰), which we relate to rapid authigenic clay formation from reactive terrigenous minerals delivered by continental runoff. This study highlights the direct coupling of terrestrial erosion and associated marine sedimentary processes. We show that marine silicate alteration can be rapid and highly dynamic in response to local weather conditions, with a potential impact on marine alkalinity and CO2-cycling on short timescales of weeks to months, and thus element turnover on human time scales.

3.
R Soc Open Sci ; 10(1): 220010, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704258

RESUMO

We developed a reaction-transport model capable of tracing iron isotopes in marine sediments to quantify the influence of bioturbation on the isotopic signature of the benthic dissolved (DFe) flux. By fitting the model to published data from marine sediments, we calibrated effective overall fractionation factors for iron reduction (-1.3‰), oxidation (+0.4‰), iron-sulfide precipitation (+0.5‰) and dissolution (-0.5‰) and pyrite precipitation (-0.7‰) that agree with literature values. Results show that for bottom-water oxygen concentrations greater than 50 µM, higher bioturbation increased the benthic DFe flux and its δ 56Fe signature. By contrast, for oxygen concentrations less than 50 µM, higher bioturbation decreased the benthic DFe flux and its δ 56Fe signature. The expressed overall fractionation of the benthic DFe flux relative to the δ 56Fe of the iron oxides entering the sediment ranges from -1.67‰ to 0.0‰. On a global scale, the presence of bioturbation increases sedimentary DFe release from approximately 70 G mol DFe yr-1 to approximately 160 G mol DFe yr-1 and decreases the δ 56Fe signature of the DFe flux.

4.
Environ Sci Technol ; 53(17): 10258-10268, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31432678

RESUMO

Carbon dioxide (CO2) capture and storage (CCS) has been discussed as a potentially significant mitigation option for the ongoing climate warming. Natural CO2 release sites serve as natural laboratories to study subsea CO2 leakage in order to identify suitable analytical methods and numerical models to develop best-practice procedures for the monitoring of subseabed storage sites. We present a new model of bubble (plume) dynamics, advection-dispersion of dissolved CO2, and carbonate chemistry. The focus is on a medium-sized CO2 release from 294 identified small point sources around Panarea Island (South-East Tyrrhenian Sea, Aeolian Islands, Italy) in water depths of about 40-50 m. This study evaluates how multiple CO2 seep sites generate a temporally variable plume of dissolved CO2. The model also allows the overall flow rate of CO2 to be estimated based on field measurements of pH. Simulations indicate a release of ∼6900 t y-1 of CO2 for the investigated area and highlight an important role of seeps located at >20 m water depth in the carbon budget of the Panarea offshore gas release system. This new transport-reaction model provides a framework for understanding potential future leaks from CO2 storage sites.


Assuntos
Dióxido de Carbono , Água , Carbonatos , Ilhas , Itália
5.
Front Microbiol ; 8: 169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28232821

RESUMO

The sediment-water interface is an important site for material exchange in marine systems and harbor unique microbial habitats. The flux of nutrients, metals, and greenhouse gases at this interface may be severely dampened by the activity of microorganisms and abiotic redox processes, leading to the "benthic filter" concept. In this study, we investigate the spatial variability, mechanisms and quantitative importance of a microbially-dominated benthic filter for dissolved sulfide in the Eastern Gotland Basin (Baltic Sea) that is located along a dynamic redox gradient between 65 and 173 m water depth. In August-September 2013, high resolution (0.25 mm minimum) vertical microprofiles of redox-sensitive species were measured in surface sediments with solid-state gold-amalgam voltammetric microelectrodes. The highest sulfide consumption (2.73-3.38 mmol m-2 day-1) occurred within the top 5 mm in sediments beneath a pelagic hypoxic transition zone (HTZ, 80-120 m water depth) covered by conspicuous white bacterial mats of genus Beggiatoa. A distinct voltammetric signal for polysulfides, a transient sulfur oxidation intermediate, was consistently observed within the mats. In sediments under anoxic waters (>140 m depth), signals for Fe(II) and aqueous FeS appeared below a subsurface maximum in dissolved sulfide, indicating a Fe(II) flux originating from older sediments presumably deposited during the freshwater Ancylus Lake that preceded the modern Baltic Sea. Our results point to a dynamic benthic sulfur cycling in Gotland Basin where benthic sulfide accumulation is moderated by microbial sulfide oxidation at the sediment surface and FeS precipitation in deeper sediment layers. Upscaling our fluxes to the Baltic Proper; we find that up to 70% of the sulfide flux (2281 kton yr-1) toward the sediment-seawater interface in the entire basin can be consumed at the microbial mats under the HTZ (80-120 m water depth) while only about 30% the sulfide flux effuses to the bottom waters (>120 m depth). This newly described benthic filter for the Gotland Basin must play a major role in limiting the accumulation of sulfide in and around the deep basins of the Baltic Sea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...