Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38792690

RESUMO

Campylobacter jejuni is the leading cause of foodborne human gastroenteritis in the developed world. Infections are largely acquired from poultry produced for human consumption and poor food handling is thus a major risk factor. Chicken exudate (CE) is a liquid produced from defrosted commercial chicken products that facilitates C. jejuni growth. We examined the response of C. jejuni to growth in CE using a multi-omics approach. Changes in the C. jejuni proteome were assessed by label-based liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We quantified 1328 and 1304 proteins, respectively, in experiments comparing 5% CE in Mueller-Hinton (MH) medium and 100% CE with MH-only controls. These proteins represent 81.8% and 80.3% of the predicted C. jejuni NCTC11168 proteome. Growth in CE induced profound remodelling of the proteome. These changes were typically conserved between 5% and 100% CE, with a greater magnitude of change observed in 100% CE. We confirmed that CE induced C. jejuni biofilm formation, as well as increasing motility and resistance against oxidative stress, consistent with changes to proteins representing those functions. Assessment of the C. jejuni metabolome showed CE also led to increased intracellular abundances of serine, proline, and lactate that were correlated with the elevated abundances of their respective transporters. Analysis of carbon source uptake showed prolonged culture supernatant retention of proline and succinate in CE-supplemented medium. Metabolomics data provided preliminary evidence for the uptake of chicken-meat-associated dipeptides. C. jejuni exposed to CE showed increased resistance to several antibiotics, including polymyxin B, consistent with changes to tripartite efflux system proteins and those involved in the synthesis of lipid A. The C. jejuni CE proteome was also characterised by very large increases in proteins associated with iron acquisition, while a decrease in proteins containing iron-sulphur clusters was also observed. Our data suggest CE is both oxygen- and iron-limiting and provide evidence of factors required for phenotypic remodelling to enable C. jejuni survival on poultry products.

2.
J Proteome Res ; 22(11): 3519-3533, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37830485

RESUMO

Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.


Assuntos
Campylobacter jejuni , Lisina , Humanos , Lisina/metabolismo , Fibronectinas , Campylobacter jejuni/metabolismo , Acetilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo
3.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934086

RESUMO

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Assuntos
Sepse , Infecções Estafilocócicas , Humanos , Antibacterianos/uso terapêutico , Proteômica , Sepse/microbiologia , Bactérias , Escherichia coli , Klebsiella , Testes de Sensibilidade Microbiana
4.
J Proteome Res ; 20(11): 4995-5009, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34677046

RESUMO

Campylobacter jejuni is a bacterial pathogen encoding a unique N-linked glycosylation (pgl) system that mediates attachment of a heptasaccharide to N-sequon-containing membrane proteins by the PglB oligosaccharyltransferase (OST). Many targets of PglB are known, yet only a fraction of sequons are experimentally confirmed, and site occupancy remains elusive. We exploited pglB-positive (wild-type; WT) and -negative (ΔpglB) proteomes to identify potential glycosites. The nonglycosylated forms of known glycopeptides were typically increased in protein normalized abundance in ΔpglB relative to WT and restored by pglB reintroduction (ΔpglB::pglB). Sequon-containing peptide abundances were thus consistent with significant site occupancy in the presence of the OST. Peptides with novel sequons were either unaltered (likely not glycosylated) or showed abundance consistent with known glycopeptides. Topology analysis revealed that unaltered sequons often displayed cytoplasmic localization, despite originating from membrane proteins. Novel glycosites were confirmed using parallel multiprotease digestion, LC-MS/MS, and FAIMS-MS to define the glycoproteomes of WT and ΔpglB::pglBC. jejuni. We identified 142 glycosites, of which 32 were novel, and 83% of sites predicted by proteomics were validated. There are now 166 experimentally verified C. jejuni glycosites and evidence for occupancy or nonoccupancy of 31 additional sites. This study serves as a model for the use of OST-negative cells and proteomics for highlighting novel glycosites and determining occupancy in a range of organisms.


Assuntos
Campylobacter jejuni , Hexosiltransferases , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Cromatografia Líquida , Digestão , Glicosilação , Hexosiltransferases/química , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Espectrometria de Massas em Tandem
5.
Biochem Soc Trans ; 49(5): 1905-1926, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374408

RESUMO

Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Genótipo , Espectrometria de Massas/métodos , Fenótipo , Adaptação Fisiológica/genética , Interações Hospedeiro-Patógeno/genética , Lipidômica/métodos , Metaboloma/genética , Processamento de Proteína Pós-Traducional/genética , Proteoma/genética , Virulência/genética
6.
Mol Cell Proteomics ; 19(8): 1263-1280, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32376616

RESUMO

Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (∼82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (Δcj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed Δcj0025c could use known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in Δcj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not Δcj0025c Provision of an alternate sulfur source (2 mm thiosulfate) restored Δcj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Cistina/metabolismo , Ácido Desoxicólico/farmacologia , Proteômica , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/patogenicidade , Carbono/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Proteoma/metabolismo , Enxofre/deficiência , Virulência/efeitos dos fármacos
7.
Mol Omics ; 16(4): 287-304, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32347268

RESUMO

Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.

8.
Mol Cell Proteomics ; 18(4): 715-734, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617158

RESUMO

Campylobacter jejuni is a major gastrointestinal pathogen generally acquired via consumption of poorly prepared poultry. N-linked protein glycosylation encoded by the pgl gene cluster targets >80 membrane proteins and is required for both nonsymptomatic chicken colonization and full human virulence. Despite this, the biological functions of N-glycosylation remain unknown. We examined the effects of pgl gene deletion on the C. jejuni proteome using label-based liquid chromatography/tandem mass spectrometry (LC-MS/MS) and validation using data independent acquisition (DIA-SWATH-MS). We quantified 1359 proteins corresponding to ∼84% of the C. jejuni NCTC 11168 genome, and 1080 of these were validated by DIA-SWATH-MS. Deletion of the pglB oligosaccharyltransferase (ΔpglB) resulted in a significant change in abundance of 185 proteins, 137 of which were restored to their wild-type levels by reintroduction of pglB (Δaaz.batpglB::ΔpglB). Deletion of pglB was associated with significantly reduced abundances of pgl targets and increased stress-related proteins, including ClpB, GroEL, GroES, GrpE and DnaK. pglB mutants demonstrated reduced survival following temperature (4 °C and 46 °C) and osmotic (150 mm NaCl) shock and altered biofilm phenotypes compared with wild-type C. jejuni Targeted metabolomics established that pgl negative C. jejuni switched from aspartate (Asp) to proline (Pro) uptake and accumulated intracellular succinate related to proteome changes including elevated PutP/PutA (proline transport and utilization), and reduced DctA/DcuB (aspartate import and succinate export, respectively). ΔpglB chemotaxis to some substrates (Asp, glutamate, succinate and α-ketoglutarate) was reduced and associated with altered abundance of transducer-like (Tlp) proteins. Glycosylation negative C. jejuni were depleted of all respiration-associated proteins that allow the use of alternative electron acceptors under low oxygen. We demonstrate for the first time that N-glycosylation is required for a specific enzyme activity (Nap nitrate reductase) that is associated with reduced abundance of the NapAB glycoproteins. These data indicate a multifactorial role for N-glycosylation in C. jejuni physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Proteômica , Transporte Biológico , Células CACO-2 , Transporte de Elétrons , Glicoproteínas/metabolismo , Glicosilação , Humanos , Mutação/genética , Nitrato Redutase/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...