Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Geroscience ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499956

RESUMO

Aging is the basis of neurodegeneration and dementia that affects each endemic in the body. Normal aging in the brain is associated with progressive slowdown and disruptions in various abilities such as motor ability, cognitive impairment, decreasing information processing speed, attention, and memory. With the aggravation of global aging, more research focuses on brain changes in the elderly adult. The graph theory, in combination with functional magnetic resonance imaging (fMRI), makes it possible to evaluate the brain network functional connectivity patterns in different conditions with brain modeling. We have evaluated the brain network communication model changes in three different age groups (including 8 to 15 years, 25 to 35 years, and 45 to 75 years) in lifespan pilot data from the human connectome project (HCP). Initially, Pearson correlation-based connectivity networks were calculated and thresholded. Then, network characteristics were compared between the three age groups by calculating the global and local graph measures. In the resting state brain network, we observed decreasing global efficiency and increasing transitivity with age. Also, brain regions, including the amygdala, putamen, hippocampus, precuneus, inferior temporal gyrus, anterior cingulate gyrus, and middle temporal gyrus, were selected as the most affected brain areas with age through statistical tests and machine learning methods. Using feature selection methods, including Fisher score and Kruskal-Wallis, we were able to classify three age groups using SVM, KNN, and decision-tree classifier. The best classification accuracy is in the combination of Fisher score and decision tree classifier obtained, which was 82.2%. Thus, by examining the measures of functional connectivity using graph theory, we will be able to explore normal age-related changes in the human brain, which can be used as a tool to monitor health with age.

2.
Heliyon ; 10(4): e25999, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38380013

RESUMO

Improving system security can be achieved through people identification. Among various methods, electroencephalography-based (EEG-based) identification is a dependable way to prevent identity theft and impersonation. Due to the distractions present in the identification environment, such as lack of focus, mental engagement, small body movements, blinking, and other noises, it is essential to analyze data that reflects these conditions. The present research aims to advance practical EEG-based identification by studying data with mental preoccupation and developing a suitable algorithm. In this article, data from a study conducted on a group of 109 individuals has been analyzed. The data is categorized into two groups: focused data and waiting data. The article describes preprocessing the data and extracting three types of features, including Statistical, Frequency, and Wavelet. Then, a deep neural network (DNN) is used to classify the data. The DNN utilizes a multilayer, fully-connected neural network, with the number of layers and neurons varying based on the data type. Optimization and regularization methods are employed to improve the accuracy of the results. The DNN achieved an average accuracy of 99.19% for frequency features over all subjects in the focused data category, while the waiting data category showed an accuracy of 97.81%.

3.
Basic Clin Neurosci ; 14(2): 297-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107533

RESUMO

Introduction: Video games affect the stress system and cognitive abilities in different ways. Here, we evaluated electrophysiological and biochemical indicators of stress and assessed their effects on cognition and behavioral indexes after playing a scary video game. Methods: Thirty volunteers were recruited into two groups as control and experimental. The saliva and blood samples were collected before and after intervention (watching/playing the scary game for control and experimental groups respectively). To measure cortisol and salivary alpha-amylase (sAA) levels, oxytocin (OT), and brain-derived neurotrophic factor (BDNF) plasma levels, dedicated ELISA kits were used. Electroencephalography recording was done before and after interventions for electroencephalogram (EEG)-based emotion and stress recognition. Then, the feature extraction (for mental stress, arousal, and valence) was done. Matrix laboratory (MATLAB) software, version 7.0.1 was used for processing EEG-acquired data. The repeated measures were applied to determine the intragroup significance level of difference. Results: Scary gameplay increases mental stress (P<0.001) and arousal (P<0.001) features and decreases the valence (P<0.001) one. The salivary cortisol and alpha-amylase levels were significantly higher after the gameplay (P<0.001 for both). OT and BDNF plasma levels decreased after playing the scary game (P<0.05 for both). Conclusion: We conclude that perceived stress considerably elevates among players of scary video games, which adversely affects the emotional and cognitive capabilities, possibly via the strength of synaptic connections, and dendritic thorn construction of the brain neurons among players. Highlights: The mental stress level increases in players of scary video games.The salivary cortisol and alpha-amylase levels are significantly higher after the scary gameplay.Plasma levels of oxytocin and brain-derived neurotrophic factor decrease after the scary gameplay.The arousal and valence features increase in players of scary video game.Cognitive capabilities are adversely affected by the scary gameplay. Plain Language Summary: Nowadays, video games have become an important part of human life at different ages. Therefore, assessing their effects (improving and/or damaging) on cognition and behavior is important for understanding how they affect the nervous system. The results of such studies can be used to design a variety of games in the future in a way that minimizes the harmful side effects of video games on human cognitive functions and maximizes their beneficial effects.

4.
iScience ; 26(10): 107808, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736040

RESUMO

Area 2 of the primary somatosensory cortex (S1), encodes proprioceptive information of limbs. Several studies investigated the encoding of movement parameters in this area. However, the single-trial decoding of these parameters, which can provide additional knowledge about the amount of information available in sub-regions of this area about instantaneous limb movement, has not been well investigated. We decoded kinematic and kinetic parameters of active and passive hand movement during center-out task using conventional and state-based decoders. Our results show that this area can be used to accurately decode position, velocity, force, moment, and joint angles of hand. Kinematics had higher accuracies compared to kinetics and active trials were decoded more accurately than passive trials. Although the state-based decoder outperformed the conventional decoder in the active task, it was the opposite in the passive task. These results can be used in intracortical micro-stimulation procedures to provide proprioceptive feedback to BCI subjects.

5.
Schizophrenia (Heidelb) ; 9(1): 64, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735164

RESUMO

Ganzfeld conditions induce alterations in brain function and pseudo-hallucinatory experiences, particularly in people with high positive schizotypy. The current study uses graph-based parameters to investigate and classify brain networks under Ganzfeld conditions as a function of positive schizotypy. Participants from the general population (14 high schizotypy (HS), 29 low schizotypy (LS)) had an electroencephalography assessment during Ganzfeld conditions, with varying visual activation (8 frequencies of random light flicker) and soundscape-induced mood (neutral, serenity, and anxiety). Weighted functional networks were computed in six frequency sub-bands (delta, theta, alpha-low, alpha-high, beta, and gamma) as a function of light-flicker frequency and mood. The brain network was analyzed using graph theory parameters, including clustering coefficient (CC), strength, and global efficiency (GE). It was found that the LS groups had higher CC and strength than the HS groups, especially in bilateral temporal and frontotemporal brain regions. Moreover, some decreases in CC and strength measures were found in LS groups among occipital and parieto-occipital brain regions. LS groups also had significantly higher GE in all Ganzfeld conditions compared to the HS groups. The random under-sampling boosting (RUSBoost) algorithm achieved the best classification performance with an accuracy of 95.34%, specificity of 96.55%, and sensitivity of 92.85% during an anxiety-induction Ganzfeld condition. This is the first exploration of the relationship between brain functional state changes under Ganzfeld conditions in individuals who vary in positive schizotypy. The accuracy of graph-based parameters in classifying brain states as a function of schizotypy is shown, particularly for brain activity during anxiety induction, and should be investigated in psychosis.

6.
Sci Rep ; 13(1): 16476, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777667

RESUMO

Working memory, which is regarded as the foundation of cognitive processes, is a system that stores, processes, and manipulates information in short intervals of time that are actually needed for daily functioning. This study aimed to assess the brain activity of healthy controls (HC) while performing the N-back task, which is one of the most popularly used tests for evaluating working memory along with functional magnetic resonance imaging (fMRI). In this regard, we collected fMRI data from right-handed individuals in a 3.0 T scanner during the Persian version of the visual variant N-back task performance with three levels of complexity varied throughout the experiment (1, 2, and 3-back conditions) to increase the cognitive demands. The statistical parametric mapping (SPM12) software was used to analyze fMRI data for the identification of cognitive load-dependent activation patterns based on contrast images obtained from different levels of task difficulty. Our findings showed that as cognitive complexity increased, the number of significant activation clusters and cluster extent increased in several areas distributed in the cerebellum, frontoparietal lobes, insula, SMA, and lenticular nucleus, the majority of which are recognized for their role in working memory. Furthermore, deactivation patterns during 1-, 2-, and 3-back vs. 0-back contrasts revealed significant clusters in brain regions that are mostly described as being part of the default mode network (DMN). Based on previous research, our results supported the recognized involvement of the mentioned cortical and subcortical areas in various types or levels of N-back tasks. This study found that altering activation patterns by increasing task difficulty could aid in evaluating the various stages of cognitive dysfunction in many brain diseases such as multiple sclerosis (MS) and Alzheimer's disease by comparing controls in future studies to apply early appropriate treatment strategies.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Encéfalo/fisiologia , Cognição , Testes Neuropsicológicos
8.
Brain Sci ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831866

RESUMO

Despite the overlapping neural circuits underlying natural and drug rewards, several studies have suggested different behavioral and neurochemical mechanisms in response to drug vs. natural rewards. The strong link between hippocampal theta oscillations (4-12 Hz) and reward-associated learning and memory has raised the hypothesis that this rhythm in hippocampal CA1 might be differently modulated by drug- and natural-conditioned place preference (CPP). Time-frequency analysis of recorded local field potentials (LFPs) from the CA1 of freely moving male rats previously exposed to a natural (in this case, food), drug (in this case, morphine), or saline (control) reward cue in the CPP paradigm showed that the hippocampal CA1 theta activity represents a different pattern for entrance to the rewarded compared to unrewarded compartment during the post-test session of morphine- and natural-CPP. Comparing LFP activity in the CA1 between the saline and morphine/natural groups showed that the maximum theta power occurred before entering the unrewarded compartment and after the entrance to the rewarded compartment in morphine and natural groups, respectively. In conclusion, our findings suggest that drug and natural rewards could differently affect the theta dynamic in the hippocampal CA1 region during reward-associated learning and contextual cueing in the CPP paradigm.

9.
Sci Rep ; 12(1): 22334, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567362

RESUMO

Achieving an efficient and reliable method is essential to interpret a user's brain wave and deliver an accurate response in biomedical signal processing. However, EEG patterns exhibit high variability across time and uncertainty due to noise and it is a significant problem to be addressed in mental task as motor imagery. Therefore, fuzzy components may help to enable a higher tolerance to noisy conditions. With the advent of Deep Learning and its considerable contributions to Artificial intelligence and data analysis, numerous efforts have been made to evaluate and analyze brain signals. In this study, to make use of neural activity phenomena, the feature extraction preprocessing is applied based on Multi-scale filter bank CSP. In the following, the hybrid series architecture named EEG-CLFCNet is proposed which extract the frequency and spatial features by Compact-CNN and the temporal features by the LSTM network. However, the classification results are evaluated by merging the fully connected network and fuzzy neural block. Here, the proposed method is further validated by the BCI competition IV-2a dataset and compare with two hyperparameter tuning methods, Coordinate-descent and Bayesian optimization algorithm. The proposed architecture that used fuzzy neural block and Bayesian optimization as tuning approach, results in better classification accuracy compared with the state-of-the-art literatures. As results shown, the remarkable performance of the proposed model, EEG-CLFCNet, and the general integration of fuzzy units to other classifiers would pave the way for enhanced MI-based BCI systems.


Assuntos
Inteligência Artificial , Interfaces Cérebro-Computador , Teorema de Bayes , Eletroencefalografia/métodos , Redes Neurais de Computação , Algoritmos , Processamento de Sinais Assistido por Computador , Imaginação/fisiologia
10.
Sci Rep ; 12(1): 20914, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463385

RESUMO

Research in cognitive neuroscience has renewed the idea that brain oscillations are a core organization implicated in fundamental brain functions. Growing evidence reveals that the characteristic features of these oscillations, including power, phase and frequency, are highly non-stationary, fluctuating alongside alternations in sensation, cognition and behavior. However, there is little consensus on the functional implications of the instantaneous frequency variation in cortical excitability and concomitant behavior. Here, we capitalized on intracortical electrophysiology in the macaque monkey's visual area MT performing a visuospatial discrimination task with visual cues. We observed that the instantaneous frequency of the theta-alpha oscillations (4-13 Hz) is modulated among specific neurons whose RFs overlap with the cued stimulus location. Interestingly, we found that such frequency modulation is causally correlated with MT excitability at both scales of individual and ensemble of neurons. Moreover, studying the functional relevance of frequency variations indicated that the average theta-alpha frequencies foreshadow the monkey's reaction time. Our results also revealed that the neural synchronization strength alters with the average frequency shift in theta-alpha oscillations, suggesting frequency modulation is critical for mutually adjusting MTs' rhythms. Overall, our findings propose that theta-alpha frequency variations modulate MT's excitability, regulate mutual neurons' rhythmicity and indicate variability in behavior.


Assuntos
Excitabilidade Cortical , Gastrópodes , Córtex Visual , Animais , Neurônios , Cognição , Macaca , Periodicidade
11.
J Neural Eng ; 19(6)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36541455

RESUMO

Objective. Schizotypy, a potential phenotype for schizophrenia, is a personality trait that depicts psychosis-like signs in the normal range of psychosis continuum. Family communication may affect the social functioning of people with schizotypy. Greater family stress, such as irritability, criticism and less praise, is perceived at a higher level of schizotypy. This study aims to determine the differences between people with high and low levels of schizotypy using electroencephalography (EEG) during criticism, praise and neutral comments. EEGs were recorded from 29 participants in the general community who varied from low schizotypy to high schizotypy (HS) during a novel emotional auditory oddball task.Approach. We consider the difference in event-related potential parameters, namely the amplitude and latency of P300 subcomponents (P3a and P3b), between pairs of target words (standard, positive, negative and neutral). A model based on tensor factorization is then proposed to detect these components from the EEG using the CANDECOMP/PARAFAC decomposition technique. Finally, we employ the mutual information estimation method to select influential features for classification.Main results.The highest classification accuracy, sensitivity, and specificity of 93.1%, 94.73%, and 90% are obtained via leave-one-out cross validation.Significance. This is the first attempt to investigate the identification of individuals with psychometrically-defined HS from brain responses that are specifically associated with perceiving family stress and schizotypy. By measuring these brain responses to social stress, we achieve the goal of improving the accuracy in detection of early episodes of psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Transtorno da Personalidade Esquizotípica , Humanos , Transtorno da Personalidade Esquizotípica/diagnóstico , Transtorno da Personalidade Esquizotípica/psicologia , Transtornos Psicóticos/diagnóstico , Potenciais Evocados , Emoções , Eletroencefalografia
12.
Physiol Behav ; 254: 113912, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835179

RESUMO

Interaction of oscillatory rhythms at different frequencies is considered to provide a neuronal mechanism for information processing and transmission. These interactions have been suggested to have a vital role in cognitive functions such as working memory and decision-making. Here, we investigated the medial prefrontal cortex (mPFC), which is known to have a critical role in successful execution of spatial working memory tasks. We recorded local field potential oscillations from mPFC while rats performed a delayed-non-match-to-place (DNMTP) task. In the DNMTP task, the rat needed to decide actively about the pathway based on the information remembered in the first phase of each trial. Our analysis revealed a dynamic phase-amplitude coupling (PAC) between theta and high frequency oscillations (HFOs). This dynamic coupling emerged near the turning point and diminished afterward. Further, theta activity during the delay period, which is thought of as the maintenance phase, in the absence of the coupling, can predict task completion time. We previously reported diminished rat performance in the DNMTP task in response to electromagnetic radiation. Here, we report an increase in the theta rhythm during delay activity besides diminishing the coupling after electromagnetic radiation. These findings suggest that the different roles of the mPFC in working memory could be supported by separate mechanisms: Theta activity during the delay period for information maintenance and theta-HFOs phase-amplitude coupling relating to the decision-making procedure.


Assuntos
Memória de Curto Prazo , Memória Espacial , Animais , Memória de Curto Prazo/fisiologia , Neurônios , Córtex Pré-Frontal/fisiologia , Ratos , Memória Espacial/fisiologia , Ritmo Teta/fisiologia
13.
Comput Methods Programs Biomed ; 223: 106961, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759821

RESUMO

BACKGROUND AND OBJECTIVE: Local Field Potentials (LFPs) recorded from the primary motor cortex (M1) have been shown to be very informative for decoding movement parameters, and these signals can be used to decode forelimb kinematic and kinetic parameters accurately. Although locomotion is one of the most basic and important motor abilities of humans and animals, the potential of LFPs in decoding abstract hindlimb locomotor parameters has not been investigated. This study investigates the feasibility of decoding speed and slope of locomotion, as two important abstract parameters of walking, using the LFP signals. METHODS: Rats were trained to walk smoothly on a treadmill with different speeds and slopes. The brain signals were recorded using the microwire arrays chronically implanted in the hindlimb area of M1 while rats walked on the treadmill. LFP channels were spatially filtered using optimal common spatial patterns to increase the discriminability of speeds and slopes of locomotion. Logarithmic wavelet band powers were extracted as basic features, and the best features were selected using the statistical dependency criterion before classification. RESULTS: Using 5 s LFP trials, the average classification accuracies of four different speeds and seven different slopes reached 90.8% and 86.82%, respectively. The high-frequency LFP band (250-500 Hz) was the most informative band about these parameters and contributed more than other frequency bands in the final decoder model. CONCLUSIONS: Our results show that the LFP signals in M1 accurately decode locomotion speed and slope, which can be considered as abstract walking parameters needed for designing long-term brain-computer interfaces for hindlimb locomotion control.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Potenciais de Ação , Animais , Fenômenos Biomecânicos , Humanos , Locomoção , Ratos
14.
Int J Neural Syst ; 32(4): 2250013, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35236254

RESUMO

Schizotypy is a latent cluster of personality traits that denote a vulnerability for schizophrenia or a type of spectrum disorder. The aim of the study is to investigate parametric effective brain connectivity features for classifying high versus low schizotypy (LS) status. Electroencephalography (EEG) signals are recorded from 13 high schizotypy (HS) and 11 LS participants during an emotional auditory odd-ball task. The brain connectivity signals for machine learning are taken after the settlement of event-related potentials. A multivariate autoregressive (MVAR)-based connectivity measure is estimated from the EEG signals using the directed transfer functions (DTFs) method. The values of DTF power in five standard frequency bands are used as features. The support vector machines (SVMs) revealed significant differences between HS and LS. The accuracy, specificity, and sensitivity of the results using SVM are as high as 89.21%, 90.3%, and 88.2%, respectively. Our results demonstrate that the effective brain connectivity in prefrontal/parietal and prefrontal/frontal brain regions considerably changes according to schizotypal status. These findings prove that the brain connectivity indices offer valuable biomarkers for detecting schizotypal personality. Further monitoring of the changes in DTF following the diagnosis of schizotypy may lead to the early identification of schizophrenia and other spectrum disorders.


Assuntos
Esquizofrenia , Transtorno da Personalidade Esquizotípica , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Lobo Frontal , Humanos , Esquizofrenia/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/psicologia
15.
Brain Struct Funct ; 227(5): 1641-1654, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35106628

RESUMO

Neural synchronization has been engaged in several brain mechanisms. Previous studies have shown that the interaction between the time of spiking activity and phase of local field potentials (LFPs) plays a key role in many cognitive functions. However, the potential role of this spike-LFP phase coupling (SPC) in neural coding is not fully understood. Here, we sought to investigate the role of this SPC for encoding the sensory properties of visual stimuli. To this end, we measured SPC strength in the preferred and anti-preferred motion directions of stimulus presented inside the receptive field of middle temporal (MT) neurons. We found a selective response in terms of SPC strength for different directions of motion. Remarkably, this selective function is inverted with respect to the spiking activity. In other words, the least SPC occurs for the preferred direction (based on the spike rate), and vice versa; the strongest SPC is induced in the anti-preferred direction. Altogether, these findings imply that the neural system may use spike-LFP phase coupling in the primate visual cortex to encode sensory information.


Assuntos
Córtex Visual , Potenciais de Ação/fisiologia , Animais , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia
16.
J Neurosci Methods ; 371: 109499, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151668

RESUMO

BACKGROUND: Steady-state visually evoked potentials (SSVEP) are one of the most important paradigms in the BCI Domain. Among the best methods for detecting frequency in the SSVEP-based BCI is the Canonical Correlation Analysis (CCA), which calculates canonical correlation between two sets of multidimensional variables, the electroencephalogram (EEG) and reference signals. Despite its efficiency and widespread application, CCA algorithm has some limitations. One major limitation of CCA is to only consider the spatial domain information of the signal. NEW METHOD: However, regarding frequency of signal as another critical feature of the signals, combining both spatial and frequency domain information can significantly improve the performance of frequency recognition. Although several previous studies about CCA algorithm, could improve its performance, they have not addressed CCA algorithm's limitation. To address this concern, in the current study, we presented Spatio-Spectral CCA (SS-CCA) algorithm, which is inspired from Common Spatio-Spectral Patterns (CSSP) algorithm. In the SS-CCA algorithm, we added a time delay to the EEG signal, in order to simultaneously optimize spatial and frequency information and obtain the canonical variables. Accordingly, for correlation coefficient's calculations, more information from EEG signal is utilized. RESULTS: Finally, SS-CCA algorithm which is used as the base model of Filter Bank CCA (FBCCA), and Filter Bank SS-CCA algorithms, can help increase the frequency recognition performance. In order to evaluate the proposed method, 35-subject benchmark dataset were used. Proposed algorithm yielded mean accuracy 98.33 across all subjects. COMPARISON WITH EXISTING METHODS: Our classification accuracy and Information Transfer Rate (ITR) results showed that the performance of the above-mentioned method improves in comparison to the CCA. CONCLUSIONS: In conclusion, using the proposed SS-CCA algorithm instead of the CCA, in all our experiments the CCA-based methods were improved.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Potenciais Evocados , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa
17.
Front Hum Neurosci ; 16: 862588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36926377

RESUMO

Many visual attention models have been presented to obtain the saliency of a scene, i.e., the visually significant parts of a scene. However, some mechanisms are still not taken into account in these models, and the models do not fit the human data accurately. These mechanisms include which visual features are informative enough to be incorporated into the model, how the conspicuity of different features and scales of an image may integrate to obtain the saliency map of the image, and how the structure of an image affects the strategy of our attention system. We integrate such mechanisms in the presented model more efficiently compared to previous models. First, besides low-level features commonly employed in state-of-the-art models, we also apply medium-level features as the combination of orientations and colors based on the visual system behavior. Second, we use a variable number of center-surround difference maps instead of the fixed number used in the other models, suggesting that human visual attention operates differently for diverse images with different structures. Third, we integrate the information of different scales and different features based on their weighted sum, defining the weights according to each component's contribution, and presenting both the local and global saliency of the image. To test the model's performance in fitting human data, we compared it to other models using the CAT2000 dataset and the Area Under Curve (AUC) metric. Our results show that the model has high performance compared to the other models (AUC = 0.79 and sAUC = 0.58) and suggest that the proposed mechanisms can be applied to the existing models to improve them.

18.
Basic Clin Neurosci ; 13(5): 731-744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37313024

RESUMO

Introduction: Natural rewards are essential for survival. However, drug-seeking behaviors can be maladaptive and endanger survival. The present study was conducted to enhance our understanding of how animals respond to food and morphine as natural and drug rewards, respectively, in a conditioned place preference (CPP) paradigm. Methods: We designed a protocol to induce food CPP and compare it as a natural reward with morphine CPP in rats. The protocol for reward induction in both groups (foods and morphine) consisted of three phases: pre-test, conditioning, and post-test. In morphine groups, we injected morphine as a reward (5 mg/kg, SC). To induce natural reward, we used two different protocols. In the first one, the rats were deprived of food for 24 h. In the other method, the rats were restricted to food for 14 days. During the conditioning period, the animals received daily chow, biscuits, or popcorn as a reward inducer. Results: Results revealed that CPP was not induced in food-deprived rats. A combination of food restriction (as a facilitator) and a biscuit or popcorn-induced reward using CPP. In contrast, food deprivation did not facilitate food CPP in response to regular food. Interestingly the CPP score of the group which received biscuits during a 7-day conditioning period was more than that of the morphine group. Conclusion: In conclusion, food restriction could be a better protocol than food deprivation to facilitate food reward.

19.
BMC Med Inform Decis Mak ; 21(1): 270, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560859

RESUMO

BACKGROUND: Epilepsy is a neurological disorder from which almost 50 million people have been suffering. These statistics indicate the importance of epilepsy diagnosis. Electroencephalogram (EEG) signals analysis is one of the most common methods for epilepsy characterization; hence, various strategies were applied to classify epileptic EEGs. METHODS: In this paper, four different nonlinear features such as Fractal dimensions including Higuchi method (HFD) and Katz method (KFD), Hurst exponent, and L-Z complexity measure were extracted from EEGs and their frequency sub-bands. The features were ranked later by implementing Relieff algorithm. The ranked features were applied sequentially to three different classifiers (MLPNN, Linear SVM, and RBF SVM). RESULTS: According to the dataset used for this study, there are five classification problems named ABCD/E, AB/CD/E, A/D/E, A/E, and D/E. In all cases, MLPNN was the most accurate classifier. Its performances for mentioned classification problems were 99.91%, 98.19%, 98.5%, 100% and 99.84%, respectively. CONCLUSION: The results demonstrate that KFD is the highest-ranking feature; In addition, beta and theta sub-bands are the most important frequency bands because, for all cases, the top features were KFDs extracted from beta and theta sub-bands. Moreover, high levels of accuracy have been obtained just by using these two features which reduce the complexity of the classification.


Assuntos
Epilepsia , Processamento de Sinais Assistido por Computador , Algoritmos , Encéfalo , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Máquina de Vetores de Suporte
20.
J Cogn Neurosci ; 33(9): 1798-1810, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375418

RESUMO

How does the human brain prioritize different visual representations in working memory (WM)? Here, we define the oscillatory mechanisms supporting selection of "where" and "when" features from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. A retro-cue presented mid-delay prompted which of the two shapes had been in either the top/bottom spatial position or first/second temporal position. We found that cross-frequency coupling between parieto-occipital alpha (α; 8-12 Hz) oscillations and topographically distributed gamma (γ; 30-50 Hz) activity tracked selection of the distinct cued feature in controls. This signature of feature selection was disrupted in patients with pFC lesions, despite intact α-γ coupling independent of feature selection. These findings reveal a pFC-dependent parieto-occipital α-γ mechanism for the rapid selection of visual WM representations.


Assuntos
Eletroencefalografia , Memória de Curto Prazo , Sinais (Psicologia) , Humanos , Orientação Espacial , Percepção Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...