Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
2.
Plant Physiol ; 194(3): 1304-1322, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37394947

RESUMO

Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.


Assuntos
Frutas , Árvores , Árvores/genética , Frutas/genética , Melhoramento Vegetal , Mudança Climática , Edição de Genes
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674493

RESUMO

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Assuntos
Frutas , Árvores , Árvores/genética , Frutas/genética , Melhoramento Vegetal/métodos , Genoma de Planta , Genômica
4.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142806

RESUMO

Mycotoxin contamination of maize kernels by fungal pathogens like Fusarium verticillioides and Aspergillus flavus is a chronic global challenge impacting food and feed security, health, and trade. Maize lipoxygenase genes (ZmLOXs) synthetize oxylipins that play defense roles and govern host-fungal interactions. The current study investigated the involvement of ZmLOXs in maize resistance against these two fungi. A considerable intraspecific genetic and transcript variability of the ZmLOX family was highlighted by in silico analysis comparing publicly available maize pan-genomes and pan-transcriptomes, respectively. Then, phenotyping and expression analysis of ZmLOX genes along with key genes involved in oxylipin biosynthesis were carried out in a maize mutant carrying a Mu transposon insertion in the ZmLOX4 gene (named UFMulox4) together with Tzi18, Mo17, and W22 inbred lines at 3- and 7-days post-inoculation with F. verticillioides and A. flavus. Tzi18 showed the highest resistance to the pathogens coupled with the lowest mycotoxin accumulation, while UFMulox4 was highly susceptible to both pathogens with the most elevated mycotoxin content. F. verticillioides inoculation determined a stronger induction of ZmLOXs and maize allene oxide synthase genes as compared to A. flavus. Additionally, oxylipin analysis revealed prevalent linoleic (18:2) peroxidation by 9-LOXs, the accumulation of 10-oxo-11-phytoenoic acid (10-OPEA), and triglyceride peroxidation only in F. verticillioides inoculated kernels of resistant genotypes.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Fusarium/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Micotoxinas/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triglicerídeos/metabolismo , Zea mays/metabolismo
5.
Front Plant Sci ; 13: 878001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656017

RESUMO

Epidermal Patterning Factor Like 9 (EPFL9), also known as STOMAGEN, is a cysteine-rich peptide that induces stomata formation in vascular plants, acting antagonistically to other epidermal patterning factors (EPF1, EPF2). In grapevine there are two EPFL9 genes, EPFL9-1 and EPFL9-2 sharing 82% identity at protein level in the mature functional C-terminal domain. In this study, CRISPR/Cas9 system was applied to functionally characterize VvEPFL9-1 in 'Sugraone', a highly transformable genotype. A set of plants, regenerated after gene transfer in embryogenic calli via Agrobacterium tumefaciens, were selected for evaluation. For many lines, the editing profile in the target site displayed a range of mutations mainly causing frameshift in the coding sequence or affecting the second cysteine residue. The analysis of stomata density revealed that in edited plants the number of stomata was significantly reduced compared to control, demonstrating for the first time the role of EPFL9 in a perennial fruit crop. Three edited lines were then assessed for growth, photosynthesis, stomatal conductance, and water use efficiency in experiments carried out at different environmental conditions. Intrinsic water-use efficiency was improved in edited lines compared to control, indicating possible advantages in reducing stomatal density under future environmental drier scenarios. Our results show the potential of manipulating stomatal density for optimizing grapevine adaptation under changing climate conditions.

6.
Sci Rep ; 10(1): 20155, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214661

RESUMO

Genome editing via CRISPR/Cas9 is a powerful technology, which has been widely applied to improve traits in cereals, vegetables and even fruit trees. For the delivery of CRISPR/Cas9 components into dicotyledonous plants, Agrobacterium tumefaciens mediated gene transfer is still the prevalent method, although editing is often accompanied by the integration of the bacterial T-DNA into the host genome. We assessed two approaches in order to achieve T-DNA excision from the plant genome, minimizing the extent of foreign DNA left behind. The first is based on the Flp/FRT system and the second on Cas9 and synthetic cleavage target sites (CTS) close to T-DNA borders, which are recognized by the sgRNA. Several grapevine and apple lines, transformed with a panel of CRISPR/SpCas9 binary vectors, were regenerated and characterized for T-DNA copy number and for the rate of targeted editing. As detected by an optimized NGS-based sequencing method, trimming at T-DNA borders occurred in 100% of the lines, impairing in most cases the excision. Another observation was the leakage activity of Cas9 which produced pierced and therefore non-functional CTS. Deletions of genomic DNA and presence of filler DNA were also noticed at the junctions between T-DNA and genomic DNA. This study proved that many factors must be considered for designing efficient binary vectors capable of minimizing the presence of exogenous DNA in CRISPRed fruit trees.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Malus/genética , Plantas Geneticamente Modificadas/genética , Vitis/genética , Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , DNA Bacteriano , Edição de Genes/métodos , Genes de Plantas , Genoma de Planta
7.
Plant Biotechnol J ; 18(3): 845-858, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495052

RESUMO

The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Erwinia amylovora/patogenicidade , Edição de Genes , Malus/genética , Doenças das Plantas/genética , DNA Bacteriano , Técnicas de Silenciamento de Genes , Malus/microbiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia
8.
Hortic Res ; 4: 17067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238598

RESUMO

The new plant breeding technologies (NPBTs) have recently emerged as powerful tools in the context of 'green' biotechnologies. They have wide potential compared to classical genetic engineering and they are attracting the interest of politicians, stakeholders and citizens due to the revolutionary impact they may have on agriculture. Cisgenesis and genome editing potentially allow to obtain pathogen-resistant plants or plants with enhanced qualitative traits by introducing or disrupting specific genes in shorter times compared to traditional breeding programs and by means of minimal modifications in the plant genome. Grapevine, the most important fruit crop in the world from an economical point of view, is a peculiar case for NPBTs because of the load of cultural aspects, varietal traditions and consumer demands, which hinder the use of classical breeding techniques and, furthermore, the application of genetic engineering to wine grape cultivars. Here we explore the technical challenges which may hamper the application of cisgenesis and genome editing to this perennial plant, in particular focusing on the bottlenecks of the Agrobacterium-mediated gene transfer. In addition, strategies to eliminate undesired sequences from the genome and to choose proper target sites are discussed in light of peculiar features of this species. Furthermore is reported an update of the international legislative frameworks regulating NPBT products which shows conflicting positions and, in the case of the European Union, a prolonged lack of regulation.

9.
Front Plant Sci ; 8: 2244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387072

RESUMO

Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system "microvine" and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

10.
Front Plant Sci ; 7: 1793, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018369

RESUMO

During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with high-expressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor like-kinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening.

11.
Hortic Res ; 3: 16016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27390621

RESUMO

Erysiphe necator is the causal agent of powdery mildew (PM), one of the most destructive diseases of grapevine. PM is controlled by sulfur-based and synthetic fungicides, which every year are dispersed into the environment. This is why PM-resistant varieties should become a priority for sustainable grapevine and wine production. PM resistance can be achieved in other crops by knocking out susceptibility S-genes, such as those residing at genetic loci known as MLO (Mildew Locus O). All MLO S-genes of dicots belong to the phylogenetic clade V, including grapevine genes VvMLO7, 11 and 13, which are upregulated during PM infection, and VvMLO6, which is not upregulated. Before adopting a gene-editing approach to knockout candidate S-genes, the evidence that loss of function of MLO genes can reduce PM susceptibility is necessary. This paper reports the knockdown through RNA interference of VvMLO6, 7, 11 and 13. The knockdown of VvMLO6, 11 and 13 did not decrease PM severity, whereas the knockdown of VvMLO7 in combination with VvMLO6 and VvMLO11 reduced PM severity up to 77%. The knockdown of VvMLO7 and VvMLO6 seemed to be important for PM resistance, whereas a role for VvMLO11 does not seem likely. Cell wall appositions (papillae) were present in both resistant and susceptible lines in response to PM attack. Thirteen genes involved in defense were less upregulated in infected mlo plants, highlighting the early mlo-dependent disruption of PM invasion.

12.
Transgenic Res ; 24(1): 43-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25011563

RESUMO

The fungi Botrytis cinerea and Erysiphe necator are responsible for gray mold and powdery mildew diseases, respectively, which are among the most devastating diseases of grapes. Two endochitinase (ech42 and ech33) genes and one N-acetyl-ß-D-hexosaminidase (nag70) gene from biocontrol agents related to Trichoderma spp. were used to develop a set of 103 genetically modified (GM) 'Thompson Seedless' lines (568 plants) that were established in open field in 2004 and evaluated for fungal tolerance starting in 2006. Statistical analyses were carried out considering transgene, explant origin, and plant response to both fungi in the field and in detached leaf assays. The results allowed for the selection of the 19 consistently most tolerant lines through two consecutive years (2007-2008 and 2008-2009 seasons). Plants from these lines were grafted onto the rootstock Harmony and established in the field in 2009 for further characterization. Transgene status was shown in most of these lines by Southern blot, real-time PCR, ELISA, and immunostrips; the most tolerant candidates expressed the ech42-nag70 double gene construct and the ech33 gene from a local Hypocrea virens isolate. B. cinerea growth assays in Petri dishes supplemented with berry juices extracted from the most tolerant individuals of the selected population was inhibited. These results demonstrate that improved fungal tolerance can be attributed to transgene expression and support the iterative molecular and physiological phenotyping in order to define selected individuals from a population of GM grapevines.


Assuntos
Quitinases/genética , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , beta-N-Acetil-Hexosaminidases/genética , Botrytis/patogenicidade , Técnicas de Transferência de Genes , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Trichoderma/enzimologia , Trichoderma/genética , Vitis/genética , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
13.
J Agric Food Chem ; 57(7): 2668-77, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19265380

RESUMO

We have developed an effective strategy based on real-time PCR assay for the molecular characterization of genetically modified grape and to quantify the efficiency of a marker gene removal. This research has been implemented in Vitis vinifera cv. Brachetto plantlets where exogenes were inserted during cocultures of embryogenic calli with Agrobacterium tumefaciens carrying the chemically inducible site-specific cre/loxP pX6 vector where the expression of the cre recombinase is regulated by 17-beta-estradiol. The neomycin phosphotransferase gene (nptII) for the kanamycin resistance trait was inserted as part of the gene transfer protocol, and this exogene was employed as a case study for carrying out our research. The 9-cis-epoxycarotenoid dioxygenase (nced2) and chalcone isomerase (chi) genes coding for two enzymes, involved respectively in abscisic acid and flavonoid biosynthesis, proved to be valuable reference endogenes for real-time PCR assays. Two types of duplo-target plasmids were exploited for building the standard curves: in one type (p-nptII/nced2) the nptII sequence is linked to the nced2 sequence; in the other (p-nptII/chi) it is linked to the chi. These calibrators were intended to simulate an ideal genetically modified plant carrying a homozygous single-copy exogene insertion. The repeatability test confirmed the suitability of both plasmid calibrators. Foreign gene stability can be monitored during long-term plant preservation, and the method proved to be suitable for quantifying the efficiency of nptII gene removal induced by 17-beta-estradiol.


Assuntos
Marcadores Genéticos/genética , Canamicina Quinase/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase/métodos , Vitis/genética , Southern Blotting , DNA de Plantas/análise , Dioxigenases , Estradiol/farmacologia , Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Oxigenases/genética , Proteínas de Plantas
14.
J Agric Food Chem ; 55(4): 1264-73, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17300150

RESUMO

The occurrence of intermixing, especially that resulting from genetically modified (GM) species, is increasingly becoming a problem in the delicate chain of feed and food quality control. Thus, a strategy is needed for precisely quantifying the presence of intermixing. An analytical assay based on real-time PCR has been developed; it can ascertain the extent of unexpected intermixing of GM soybean with maize meal. Three soybean-maize mix levels, with soybean intermix percentages of, respectively, 0.1, 0.5, and 1%, were prepared to simulate samples containing traces of soybean. As calibrator standards, ad hoc multiple-target pGEM-T plasmids containing soybean and maize reference genes in a 1:1 ratio were constructed. Four different maize endogenous genes, alcohol dehydrogenase 1 (adh1), high-mobility group protein a (hmga), invertase 1 (ivr1), and zein (zein), were assessed, each combined with the soybean endogenous lectin 1 (lect1) gene. Plasmids containing adh1-lect1 and zein-lect1 genes were found to be the most reliable calibration systems for this analysis, providing precise and accurate quantification results. Measuring the percentage of GM soybean intermixing makes it possible to calculate the actual transgenic component of the total sample.


Assuntos
Ração Animal/análise , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , Zea mays/genética , DNA de Plantas/análise , Contaminação de Alimentos/análise
15.
Protein Expr Purif ; 35(1): 25-31, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15039062

RESUMO

The neuregulins (NRGs) are a family of signaling proteins that are ligands for receptor tyrosine kinase of the ErbB family (namely ErbB3 and ErbB4). To date, four different neuregulin genes have been identified (neuregulin1-4). While NRG1 isoforms have been extensively studied, little is yet known about the other genes of the family. We report the expression of recombinant NRG1beta1, NRG2alpha, NRG2beta, and NRG3 as recombinant fusion proteins in Escherichia coli. The cDNA encoding for the EGF-like domain of each protein was cloned from the mouse olfactory bulb and inserted into the pET-19b vector allowing for bacterial expression of the protein fused to an N-terminal His tag. The recombinant NRGs expressed in the inclusion bodies were solubilized under denaturing conditions, purified by affinity chromatography, and refolded via dialysis in the presence of reducing agents. Purified recombinant NRGs were active as they bound to their receptors and induced their phosphorylation. In particular, and in agreement with data on the native proteins, all the molecules were able to bind and activate ErbB4 while only the rNRG1 and the two rNRG2 (but not rNRG3) bound ErbB3.


Assuntos
Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Linhagem Celular , Escherichia coli/genética , Corpos de Inclusão/química , Camundongos , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/isolamento & purificação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Neuregulina-1 , Neurregulinas , Proteínas Oncogênicas v-erbB/metabolismo , Fosforilação , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...