Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 638-648, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38282365

RESUMO

Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.


Assuntos
Nanocápsulas , Esquizofrenia , Ratos , Animais , Fumarato de Quetiapina/farmacocinética , Dopamina , Nanocápsulas/química , Esquizofrenia/tratamento farmacológico , Lipídeos
2.
Eur J Pharm Sci ; 189: 106546, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517670

RESUMO

We previously reported that ciprofloxacin (CIP) free lung interstitial concentrations are decreased by biofilm-forming Pseudomonas aeruginosa pulmonary chronic (14 d) infection. To get a better understanding on the influence of infection on CIP lung distribution, in the present study free lung interstitial fluid and epithelial lining fluid (ELF) concentrations were determined by microdialysis in biofilm-forming P. aeruginosa acutely (2 d) and chronically infected (14 d) Wistar rats following CIP 20 mg/kg i.v. bolus dosing. A popPK model was developed, using NONMEM® (version 7.4.3) with FOCE+I, with plasma data described as a three-compartment model with first-order elimination. For lung data inclusion, the model was expanded to four compartments and ELF concentrations were described as a fraction of lung levels estimated as a distribution factor (ƒD). Acute infection had a minor impact on plasma and lung CIP distribution and both infection stages did not alter ELF drug penetration. Probability of target attainment of ƒAUC0-24/MIC ≥ 90 using 20 mg q8h, equivalent to 400 mg q8h in humans, showed that CIP free concentrations in plasma are adequate to successfully treat lung infections. However, lung and ELF free interstitial concentrations might be insufficient to result in efficacious treatment of biofilm-forming P. aeruginosa chronic infection. However, lung and ELF free interstitial concentrations might be insufficient to result in efficacious treatment of biofilm-forming P. aeruginosa chronic infection.


Assuntos
Ciprofloxacina , Infecções por Pseudomonas , Humanos , Ratos , Animais , Antibacterianos , Pseudomonas aeruginosa , Infecção Persistente , Ratos Wistar , Infecções por Pseudomonas/tratamento farmacológico , Pulmão , Biofilmes , Testes de Sensibilidade Microbiana
3.
Pharm Res ; 40(7): 1777-1787, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37291462

RESUMO

OBJECTIVES: Methotrexate (MTX) is subject to therapeutic drug monitoring because of its high pharmacokinetic variability and safety risk outside the therapeutic window. This study aimed to develop a population pharmacokinetic model (popPK) of MTX for Brazilian pediatric acute lymphoblastic leukemia (ALL) patients who attended the Hospital de Clínicas de Porto Alegre, Brazil. METHODS: The model was developed using NONMEM 7.4 (Icon®), ADVAN3 TRANS4, and FOCE-I. To explain inter-individual variability, we evaluated covariates from demographic, biochemical, and genetic data (single nucleotide polymorphisms [SNPs] related to the transport and metabolism of drugs). RESULTS: A two-compartment model was built using 483 data points from 45 patients (0.33-17.83 years of age) treated with MTX (0.25-5 g/m2) in different cycles. Serum creatinine (SCR), height (HT), blood urea nitrogen (BUN) and a low BMI stratification (according to the z-score defined by the World Health Organization [LowBMI]) were added as clearance covariates. The final model described MTX clearance as [Formula: see text]. In the two-compartment structural model, the central and peripheral compartment volumes were 26.8 L and 8.47 L, respectively, and the inter-compartmental clearance was 0.218 L/h. External validation of the model was performed through a visual predictive test and metrics using data from 15 other pediatric ALL patients. CONCLUSION: The first popPK model of MTX was developed for Brazilian pediatric ALL patients, which showed that inter-individual variability was explained by renal function and factors related to body size.


Assuntos
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Metotrexato/uso terapêutico , Metotrexato/farmacocinética , Brasil , Antimetabólitos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Cinética
4.
Antimicrob Agents Chemother ; 67(7): e0038223, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367389

RESUMO

A population pharmacokinetic model was developed to describe alterations in ceftaroline brain disposition caused by meningitis in healthy and methicillin-resistant Staphylococcus aureus (MRSA)-infected rats. Blood and brain microdialysate samples were obtained after a single bolus dose of ceftaroline fosamil (20 mg/kg) administered intravenously. Plasma data were modeled as one compartment, and brain data were added to the model as a second compartment, with bidirectional drug transport between plasma and brain (Qin and Qout). The cardiac output (CO) of the animals showed a significant correlation with the relative recovery (RR) of plasma microdialysis probes, with animals with greater CO presenting lower RR values. The Qin was approximately 60% higher in infected animals, leading to greater brain exposure to ceftaroline. Ceftaroline brain penetration was influenced by MRSA infection, increasing from 17% (Qin/Qout) in healthy animals to 27% in infected animals. Simulations of a 2-h intravenous infusion of 50 mg/kg every 8 h achieved >90% probability of target attainment (PTA) in plasma and brain for the modal MRSA MIC (0.25 mg/L), suggesting that the drug should be considered an option for treating central nervous system infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Ratos , Animais , Antibacterianos/uso terapêutico , Ratos Wistar , Cefalosporinas/farmacocinética , Encéfalo , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Ceftarolina
5.
Heliyon ; 9(6): e16564, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251463

RESUMO

A bioanalytical LC-MS/MS method was developed and validated to determine ceftaroline in microdialysate samples from plasma and brain. Ceftaroline was separated using a C18 column and a mobile phase consisting of water and acetonitrile, both with 5 mM of ammonium formate and acid formic 0.1%, eluted as gradient. Ceftaroline was monitored using electrospray ionization operating on positive mode (ESI+) monitoring the transition 604.89 > 209.3 m/z. The method showed linearity in the concentration range of 0.5-500 ng/mL for brain microdialysate and 0.5-2500 ng/mL for plasma microdialysate with coefficients of determination ≥0.997. The inter-and intra-day precision, the accuracy, and the stability of the drug in different conditions were in accordance with the acceptable limits determined by international guidelines. Plasma pharmacokinetics and brain distribution of the drug were carried out after intravenous administration of 20 mg/kg of ceftaroline to male Wistar rats. The estimated geometric mean (geometric coefficient of variation) area under the curve (AUC0-∞) was 4.68 (45.8%) mg·h/L and 1.20 (54.2%) mg·h/L for plasma and brain, respectively, resulting in a brain exposure of about 33% (AUCfree brain/AUCfree plasma). The results indicate that ceftaroline presents good penetration in the brain when considering free plasma and free brain concentrations.

6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37111303

RESUMO

Unsuccessful anesthesia often occurs under an inflammatory tissue environment, making dentistry treatment extremely painful and challenging. Articaine (ATC) is a local anesthetic used at high (4%) concentrations. Since nanopharmaceutical formulations may improve the pharmacokinetics and pharmacodynamics of drugs, we encapsulated ATC in nanostructured lipid carriers (NLCs) aiming to increase the anesthetic effect on the inflamed tissue. Moreover, the lipid nanoparticles were prepared with natural lipids (copaiba (Copaifera langsdorffii) oil and avocado (Persia gratissima) butter) that added functional activity to the nanosystem. NLC-CO-A particles (~217 nm) showed an amorphous lipid core structure according to DSC and XDR. In an inflammatory pain model induced by λ-carrageenan in rats, NLC-CO-A improved (30%) the anesthetic efficacy and prolonged anesthesia (3 h) in relation to free ATC. In a PGE2-induced pain model, the natural lipid formulation significantly reduced (~20%) the mechanical pain when compared to synthetic lipid NLC. Opioid receptors were involved in the detected analgesia effect since their blockage resulted in pain restoration. The pharmacokinetic evaluation of the inflamed tissue showed that NLC-CO-A decreased tissue ATC elimination rate (ke) by half and doubled ATC's half-life. These results present NLC-CO-A as an innovative system to break the impasse of anesthesia failure in inflamed tissue by preventing ATC accelerated systemic removal by the inflammatory process and improving anesthesia by its association with copaiba oil.

7.
Antimicrob Agents Chemother ; 66(9): e0074122, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005769

RESUMO

Ceftaroline, approved to treat skin infections and pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA), has been considered for the treatment of central nervous system (CNS) infections. A population pharmacokinetic (popPK) model was developed to describe ceftaroline soft tissue and cerebrospinal fluid (CSF) distributions and investigate the probability of target attainment (PTA) of the percentage of the dosing interval that the unbound drug concentration exceeded the MIC (%fT>MIC) to treat MRSA infections. Healthy subjects' plasma and microdialysate concentrations from muscle and subcutaneous tissue following 600 mg every 12 h (q12h) and q8h and neurosurgical patients' plasma and CSF concentrations following single 600-mg dosing were used. Plasma concentrations were described by a two-compartment model, and tissue concentrations were incorporated as three independent compartments linked to the central compartment by bidirectional transport (clearance in [CLin] and CLout). Apparent volumes were fixed to physiological interstitial values. Healthy status and body weight were identified as covariates for the volume of the central compartment, and creatinine clearance was identified for clearance. The CSF glucose concentration (GLUC) was inversely correlated with CLin,CSF. Simulations showed a PTA of >90% in plasma and soft tissues for both regimens assuming an MIC of 1 mg/L and a %fT>MIC of 28.8%. Using the same target, patients with inflamed meninges (0.5 < GLUC ≤ 2 mmol/L) would reach PTAs of 99.8% and 97.2% for 600 mg q8h and q12h, respectively. For brain infection with mild inflammation (2 < GLUC ≤ 3.5 mmol/L), the PTAs would be reduced to 34.3% and 9.1%, respectively. Ceftaroline's penetration enhanced by meningeal inflammation suggests that the drug could be a candidate to treat MRSA CNS infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/uso terapêutico , Encéfalo , Cefalosporinas/uso terapêutico , Creatinina , Glucose , Humanos , Inflamação/tratamento farmacológico , Testes de Sensibilidade Microbiana , Probabilidade , Ceftarolina
8.
Pharmaceutics ; 14(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745809

RESUMO

Biofilms and infectious process may alter free antimicrobial concentrations at the site of infection. Tobramycin (TOB), an aminoglycoside used to treat lung infections caused by Pseudomonas aeruginosa, binds to alginate present in biofilm extracellular matrix increasing its minimum inhibitory concentration (MIC). This work aimed to investigate the impact of biofilm-forming P. aeruginosa infection on TOB lung and epithelial lining fluid (ELF) penetration, using microdialysis, and to develop a population pharmacokinetic (popPK) model to evaluate the probability of therapeutic target attainment of current dosing regimens employed in fibrocystic and non-fibrocystic patients. The popPK model developed has three compartments including the lung. The ELF concentrations were described by a penetration factor derived from the lung compartment. Infection was a covariate in lung volume (V3) and only chronic infection was a covariate in central volume (V1) and total clearance (CL). Simulations of the recommended treatments for acute and chronic infection achieved >90% probability of target attainment (PTA) in the lung with 4.5 mg/kg q24h and 11 mg/kg q24h, respectively, for the most prevalent P. aeruginosa MIC (0.5 mg/mL). The popPK model was successfully applied to evaluate the PTA of current TOB dosing regimens used in the clinic, indicating the need to investigate alternative posology.

9.
Exp Gerontol ; 142: 111124, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33148515

RESUMO

There are evidences about the involvement of systemic factors, such as brain-derived neurotrophic factor (BDNF), on functional exercise effects. Although aerobic exercise can impact circulating extracellular vesicles and particles (EVPs) cargo, other exercise modalities were not studied. Taken that BDNF and anti-inflammatory effects have been related to functional outcomes, and BDNF and IL-1ß have been detected in circulating EVPs, our aim was to evaluate circulating total EVPs profile from adult and aged Wistar rats submitted to exercise modalities, namely aerobic, acrobatic, resistance or combined for 20 min, 3 times a week, during 12 weeks. A modality- and age-dependent effect on total EVPs cargo was observed; aerobic exercise induced an augment in BDNF and IL-1ß in EVPs from aged rats, while acrobatic and combined exercise modalities reduced IL-1ß content in EVPs from adult ones. Besides, all exercise modalities attenuated aging-induced CD63 changes in circulating total EVPs; this finding can be involved with reduced mortality rate and improved memory performance previously observed. Changes on EVPs profile, such as increased CD63 levels can be related, at least in part, to an exercise-induced healthier global status. Additionally, aerobic exercise-induced effects on BDNF and IL-1ß levels might indicate additional benefits in aged individuals.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Vesículas Extracelulares , Envelhecimento , Animais , Cognição , Interleucina-1beta , Ratos , Ratos Wistar
10.
Artigo em Inglês | MEDLINE | ID: mdl-33091674

RESUMO

This study presents the development and validation of a fast and simple bioanalytical ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) method intended for quantifying the anti-inflammatory candidate 5'-methoxynobiletin (5'-MeONB) in rat plasma. Standard of 5'-MeONB was purified from A. conyzoides extract by using preparative HPLC. After a pretreatment of plasma samples with acetonitrile, chromatographic separations were efficiently achieved with a C18 column using a 9 min gradient system of 0.1% aqueous formic acid and acetonitrile as eluent. Drug candidate 5'-MeONB and chrysin (internal standard, IS) detection were carried out using ESI+ through the extracted ion chromatograms approach, monitored at m/z 433.1494 (for 5'-MeONB, tR:1.78 min) and m/z 255.0657 (for IS, tR:1.57 min). Method was validated according to US FDA guidelines, presenting linearity (R2 > 0.999) over concentration range of 30-750 ng/mL. Relative standard deviation (RSD) of repeatability and intermediary precision respectively ranged between 1.93-3.65% and 2.16-7.54%, considering lower limit of quantitation (30 ng/mL) and quality control (90, 360 and 600 ng/mL) samples, while accuracy was between 82.51 and 109.44%. Moreover, no interference from plasma endogenous substances, no carryover effect, and no influence of extraction method even in hemolyzed blood samples were observed. Sample stability in auto-sampler and long-term -80 °C storage, as well as matrix effect were within acceptable limits. For the first time, using the validated UPLC-MS bioanalytical method, the plasma pharmacokinetics of 5'-MeONB following 2 mg/kg intravenous bolus dosing to Wistar rats was characterized allowing the determination of the parameters describing drug distribution and elimination.


Assuntos
Anti-Inflamatórios/sangue , Cromatografia Líquida de Alta Pressão/métodos , Flavonas/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Flavonas/química , Flavonas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
11.
Artigo em Inglês | MEDLINE | ID: mdl-32771966

RESUMO

A versatile method was developed and validated for simultaneous determination of the monoamine neurotransmitters (MNT) dopamine (DA), 3-4-dyhydroxyphenilacetic acid (DOPAC), homovanilic acid (HVA), serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) in rat brain microdialysate samples using high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The method allowed for small sample volume, using positive and negative ionization mode in a single run analysis without any derivatization or cleanup steps. Analytes were quantified at concentrations ranging from 100 ng/mL to 0.05, 10, 0.5, 0.1 or 1 ng/mL (lower limit of quantification, LLOQ) of DA, DOPAC, HVA, 5-HT and 5-HIAA, respectively, showing linearity (r > 0.98), accuracy, and precision (R.S.D ± 15%) according to validation limits accepted by international guidelines. The method was successfully applied for monitoring the concentration changes of MNT in microdialysate samples from medium prefrontal cortex of Wistar rats in a neurodevelopmental model of schizophrenia before and after quetiapine 5 mg/kg i.v. bolus dose administration. No alterations in MNTs were observed in schizophrenia phenotyped rats (SPR) in comparison to the baseline shading a light on the limited response rate to antipsychotic drugs observed in chronic schizophrenic patients.


Assuntos
Química Encefálica , Cromatografia Líquida/métodos , Neurotransmissores/análise , Fumarato de Quetiapina , Esquizofrenia/metabolismo , Animais , Química Encefálica/efeitos dos fármacos , Química Encefálica/fisiologia , Modelos Animais de Doenças , Modelos Lineares , Masculino , Microdiálise , Neurotransmissores/metabolismo , Fumarato de Quetiapina/administração & dosagem , Fumarato de Quetiapina/farmacocinética , Fumarato de Quetiapina/farmacologia , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
12.
J Pharmacol Exp Ther ; 375(1): 49-58, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719070

RESUMO

This study investigated plasma and brain disposition of quetiapine lipid core nanocapsules (QLNC) in naive and schizophrenic (SCZ-like) rats and developed a semimechanistic model to describe changes in both compartments following administration of the drug in solution (FQ) or nanoencapsulated. QLNC (1 mg/ml) presented 166 ± 39 nm, low polydispersity, and high encapsulation (93.0% ± 1.4%). A model was built using experimental data from total and unbound plasma and unbound brain concentrations obtained by microdialysis after administration of single intravenous bolus dose of FQ or QLNC to naive and SCZ-like rats. A two-compartment model was identifiable both in blood and in brain with a bidirectional drug transport across the blood-brain barrier (CLin and CLout). SCZ-like rats' significant decrease in brain exposure with FQ (decrease in CLin) was reverted by QLNC, showing that nanocarriers govern quetiapine tissue distribution. Model simulations allowed exploring the potential of LNC for brain delivery. SIGNIFICANCE STATEMENT: A population approach was used to simultaneously model total and unbound plasma and unbound brain quetiapine concentrations allowing for quantification of the rate and extent of the drug's brain distribution following administration of both free drug in solution or as nanoformulation to naive and SCZ-like rats. The model-based approach is useful to better understand the possibilities and limitations of this nanoformulation for drug delivering to the brain, opening the opportunity to use this approach to improve SCZ-treatment-limited response rates.


Assuntos
Antipsicóticos/farmacocinética , Encéfalo/efeitos dos fármacos , Portadores de Fármacos/farmacocinética , Modelos Biológicos , Nanocápsulas/administração & dosagem , Fumarato de Quetiapina/farmacocinética , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/sangue , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Masculino , Microdiálise , Fumarato de Quetiapina/administração & dosagem , Fumarato de Quetiapina/sangue , Fumarato de Quetiapina/farmacologia , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/sangue , Esquizofrenia/metabolismo
13.
Schizophr Res ; 218: 173-179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31973996

RESUMO

Lipid core nanocapsules (LNC) have been extensively studied as a new treatment strategy to improve therapeutic effects of antipsychotic drugs. We investigated the efficacy of quetiapine LNCs (QLNCs) on the poly(i:c) model of schizophrenia in both male and female rats using the pre-pulse inhibition of startle response (PPI) test paradigm after evaluating the outcomes of three different poly(i:c) doses administered to pregnant damns at GD15 on neurodevelopmental outcomes of maternal immune activation (MIA) in adult offspring. QTP solution was not capable of producing a reversal in the sensorimotor gating-disruptive effect caused by the prenatal poly(i:c) exposure. The same dose of QTP given as QLNCs significantly improved PPI-impairment. This is the first study reporting the restoration of the PPI deficits in a neurodevelopmental model of SCZ using LNCs. This is a promising delivery system strategy to improve antipsychotic effects contributing to the development of better SCZ pharmacological treatments.


Assuntos
Antipsicóticos , Nanocápsulas , Esquizofrenia , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Feminino , Lipídeos , Masculino , Nanocápsulas/uso terapêutico , Gravidez , Inibição Pré-Pulso , Fumarato de Quetiapina/uso terapêutico , Ratos , Reflexo de Sobressalto , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico
15.
Eur J Pharm Sci ; 127: 319-329, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30423435

RESUMO

Ciprofloxacin (CIP) is indicated for clinical treatment of urinary and respiratory tract infections. Poor infection site penetration and consequent insufficient exposure to the antimicrobial agent may be the reason for some therapeutic failures. Ciprofloxacin is reported as a substrate for efflux transporters, such as P-glycoprotein, which could be related to the presence of sub-therapeutic drug concentration at the infection site. In the present work we evaluated CIP pharmacokinetics (PK) in plasma and lung and prostate tissues of Wistar rats after intravenous (i.v.) and intratracheal (i.t.) dosing (7 mg/Kg) in the presence and absence of P-gp inhibitor tariquidar (TAR, 15 mg/Kg). Microdialysis was applied to determine free tissue concentration-time profiles and the obtained data were analyzed by non-compartmental and population PK (popPK) analysis. A sequential strategy was used to develop the popPK model: characterization of CIP PK in tissues (Tissue model) was performed subsequently to CIP PK modeling in plasma (Plasma model). Two and three compartmental models were used to simultaneously characterize plasma concentrations after i.t. and i.v. dosing; the distribution model was developed by separating the central compartment into venous and arterial compartment and by adding lung and prostate; TAR was identified as a significant covariate for clearance and volume of distribution of central compartment as well as for inter-compartmental clearance. Our results indicate an impact of P-gp on plasma PK, likely by acting on renal active secretion of CIP. Regarding CIP exposure in lung and prostate tissues, our results suggest a complex interplay between drug transporters; P-gp inhibition by TAR was likely counterbalanced by the activity of other efflux/influx transporters, which could not be fully characterized by our model.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Pulmão/metabolismo , Modelos Biológicos , Próstata/metabolismo , Administração por Inalação , Administração Intravenosa , Animais , Antibacterianos/administração & dosagem , Transporte Biológico , Ciprofloxacina/administração & dosagem , Masculino , Microdiálise , Ratos Wistar , Distribuição Tecidual
16.
Biomed Chromatogr ; 32(8): e4254, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29656496

RESUMO

Antimicrobial prophylactic dosing of morbidly obese patients may differ from normal weighted individuals owing to alterations in drug tissue distribution. Drug subcutaneous tissue distribution can be investigated by microdialysis patients and animals. The need for cefazolin prophylactic dose adjustment in obese patients remains under discussion. The paper describes the validation of an HPLC-UV method for cefazolin quantification in plasma and microdialysate samples from clinical and pre-clinical studies. A C18 column with an isocratic mobile phase was used for drug separation, with detection at 272 nm. Total and unbound cefazolin lower limit of quantitation was 5 µg/mL in human plasma, 2 µg/mL in rat plasma, and 0.5 and 0.025 µg/mL in human and rat microdialysate samples, respectively. The maximum intra- and inter-day imprecisions were 10.7 and 8.1%, respectively. The inaccuracy was <9.7%. The limit of quantitation imprecision and inaccuracy were < 15%. Cefazolin stability in the experimental conditions was confirmed. Cefazolin plasma concentrations and subcutaneous tissue penetration were determined by microdialysis in morbidly obese patients (2 g i.v. bolus) and diet-induced obese rats (30 mg/kg i.v. bolus) using the method. This method has the main advantages of easy plasma clean-up and practicability and has proven to be useful in cefazolin clinical and pre-clinical pharmacokinetic investigations.


Assuntos
Cefazolina/sangue , Cefazolina/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Obesidade/metabolismo , Espectrofotometria Ultravioleta/métodos , Adolescente , Adulto , Animais , Cefazolina/química , Estabilidade de Medicamentos , Humanos , Modelos Lineares , Masculino , Microdiálise , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tela Subcutânea/química , Adulto Jovem
17.
Pharm Res ; 35(7): 132, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29704215

RESUMO

PURPOSE: The present work aimed to evaluate the influence of experimental meningitis caused by C. neoformans on total plasma and free brain concentrations of fluconazole (FLC) in Wistar rats. METHOD: The infection was induced by the administration of 100 µL of inoculum (1.105 CFU) through the tail vein. Free drug in the brain was assessed by microdialisys (µD). Blood and µD samples were collected at pre-determined time points up to 12 h after intravenous administration of FLC (20 mg/kg) to healthy and infected rats. The concentration-time profiles were analyzed by non-compartmental and population pharmacokinetics approaches. RESULTS: A two-compartmental popPK model was able to simultaneously describe plasma and free drug concentrations in the brain for both groups investigated. Analysis of plasma and µD samples showed a better FLC distribution on the brain of infected than healthy animals (1.04 ± 0.31 vs 0.69 ± 0.14, respectively). The probability of target attainment was calculated by Monte Carlo simulations based on the developed popPK model for 125 mg/kg dose for rats and 400-2000 mg for humans. CONCLUSIONS: FLC showed a limited use in monotherapy to the treatment of criptoccocosis in rats and humans to value of MIC >8 µg/mL.


Assuntos
Antifúngicos/metabolismo , Encéfalo/metabolismo , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Fluconazol/metabolismo , Modelos Biológicos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana/métodos , Método de Monte Carlo , Ratos , Ratos Wistar
18.
Pharm Res ; 35(6): 116, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29644481

RESUMO

PURPOSE: To determine the efficacious cefazolin prophylactic dose for bariatric surgery using free subcutaneous concentrations accessed by microdialysis after 2 g or 3 g i.v. bolus dosing to morbidly obese women and POPPK modeling. METHODS: A POPPK model with variable plasma and subcutaneous tissue protein binding was developed to simultaneously describe plasma and tissue data sets. The outcomes was predicted for common surgical site infection (SSI) bacteria over 3, 4, 5 and 6 h periods postdose, as probability of target attainment (PTA) using Monte Carlo simulation. RESULTS: CFZ 2 g warrant up to 5 h SSI prophylaxis for bacteria with MICs ≤1 mg/L such as Escherichia coli and Staphylococcus aureus. For species such as Klebsiella pneumoniae, which present MIC distribution frequency of 2 mg/L, the maintenance of PTA ≥ 90% occurs with a 3 g dose for surgeries lasting up to 5 h, and 2 g dose provide an adequate response up to 4 h (PTA of 89%). CONCLUSIONS: Effectiveness of CFZ 2 g is similar to 3 g against bacteria with a MIC up to 2 mg/L, especially if the surgery does not last for more than 4 h.


Assuntos
Antibioticoprofilaxia/métodos , Cirurgia Bariátrica/efeitos adversos , Cefazolina/administração & dosagem , Modelos Biológicos , Infecção da Ferida Cirúrgica/prevenção & controle , Adulto , Cirurgia Bariátrica/métodos , Cefazolina/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Humanos , Testes de Sensibilidade Microbiana , Microdiálise , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Tela Subcutânea/metabolismo , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/microbiologia , Adulto Jovem
19.
Xenobiotica ; 48(12): 1258-1267, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29160126

RESUMO

1. LASSBio-1736 ((E)-1-4(trifluoromethyl) benzylidene)-5-(2-4-dichlorozoyl) carbonylhydrazine) is proposed to be an oral cysteine protease leishmanicidal inhibitor. 2. This work aimed to investigate plasma pharmacokinetics, protein binding and tissue distribution of LASSBio-1736 in male Wistar rats. 3. LASSBio-1736 was administered to male Wistar rats at doses of 3.2 mg/kg intravenously and 12.6 mg/kg oral and intraperitoneal. The individual plasma-concentration profiles were determined by HPLC-UV and evaluated by non-compartmental and population pharmacokinetic analysis (Monolix 2016R1, Lixoft). Tissue distribution was evaluated after iv injection of 3.2 mg/kg drug by non-compartmental approach. 4. After intravenous administration, Vdss (1.79 L/kg), t ½ (23.1 h) and CLtot (56.1 mL/h/kg) were determined, and they were statistically similar (α =0.05) to oral and intraperitoneal pharmacokinetic parameters. The plasma profiles obtained after intravenous, oral and intraperitoneal administration of the compound were best fitted to a three-compartment and one-compartment open model with first-order absorption. 5. The intraperitoneal and oral bioavailability were around 40 and 15%, respectively. 6. Liver, spleen and skin tissues showed penetration of 340, 130 and 40%, respectively, with t ½ like plasma values. 7. LASSBio-1736 protein binding was 95 ± 2%. 8. The t ½, CLtot and tissue distribution of the compound agreed with the desired drug characteristics for leishmanicidal activity.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/farmacocinética , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/farmacocinética , Animais , Leishmaniose/sangue , Leishmaniose/tratamento farmacológico , Masculino , Ratos , Ratos Wistar
20.
AAPS J ; 19(6): 1814-1825, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875479

RESUMO

Cyclooxygenase-2 (COX-2) isoform has a critical role in the development of pain. Inhibition of COX-2 in vitro serves as a biomarker for nonsteroidal anti-inflammatory drugs (NSAIDs). The NSAID concentrations yielding 80% COX-2 inhibition (IC80) correlate with therapeutic doses to achieve analgesia across multiple COX-2 inhibitors. However, there are no time-course models relating COX-2 inhibition with decreased pain. This study aimed to characterize the relationship between NSAID concentrations, in vitro COX-2 inhibition, and acute pain decrease in humans over time by a translational approach using clinical pharmacokinetic and literature reported in vitro and clinical pharmacodynamic data. In a two-way cross-over study, eight healthy volunteers received 300 and 400 mg racemic etodolac, a preferential COX-2 inhibitor. R- and S-etodolac were determined by LC-MS/MS and simultaneously modeled. Literature in vitro IC50 data for COX-2 inhibition by S-etodolac were used to fit adjusted pain score profiles from dental patients receiving etodolac. External model qualification was performed using published ibuprofen data. Etodolac absorption was highly variable due to gastric transit kinetics and low aqueous solubility. The disposition parameters differed substantially between enantiomers with a total clearance of 2.21 L/h for R-etodolac and 26.8 L/h for S-etodolac. Volume of distribution at steady-state was 14.6 L for R-etodolac and 45.8 L for S-etodolac. Inhibition of COX-2 by 78.1% caused a half-maximal pain decrease. The time-course of pain decrease following ibuprofen was successfully predicted via the developed translational model. This proposed enantioselective pharmacodynamic-informed approach presents the first quantitative time-course model for COX-2 induced pain inhibition in patients.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Inibidores de Ciclo-Oxigenase 2/farmacocinética , Etodolac/farmacocinética , Adulto , Biomarcadores , Estudos Cross-Over , Inibidores de Ciclo-Oxigenase 2/farmacologia , Etodolac/farmacologia , Humanos , Masculino , Modelos Biológicos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...