Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Shoulder Elbow Surg ; 32(2): 383-391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36206984

RESUMO

BACKGROUND: There are no generally accepted guidelines for polyethylene (PE) glenoid component cementation techniques. In particular, it is not known whether the backside of a PE glenoid should be fully or partially cemented-or not cemented at all. We hypothesized that cementing techniques would have an impact on cement mantle volume and integrity, as well as biomechanical stability, measured as micromotion under cyclic loading. METHODS: To address our hypothesis, 3 different cementation techniques using a single 2-peg PE glenoid design with polyurethane foam were compared regarding (1) the quality and quantity of the cement mantle and (2) biomechanical stability after cyclic loading in vitro. Eight identically cemented glenoids per group were used. Group A underwent cement application only into the peg holes, group B received additional complete cement mantle application on the backside of the glenoid, and group C received the same treatment as group B but with additional standardized drill holes in the surface of the glenoid bone for extra cement interdigitation. All glenoids underwent cyclic edge loading by 105 cycles according to ASTM F2028-14. Before and after loading, cement mantle evaluation was performed by XtremeCT and biomechanical strength and loosening were evaluated by measuring the relative motion of the implants. RESULTS: The cement mantle at the back of the implant was incomplete in group A as compared with groups B and C, in which the complete PE backside was covered with a homogeneous cement mantle. The cement mantle was thickest in group C, followed by group B (P = .006) and group A (P < .001). We did not detect any breakage of the cement mantle in any of the 3 groups after testing. Primary stability during cyclic loading was similar in all groups after the "running-in" phase (up to 4000 cycles). Gross loosening did not occur in any implant. CONCLUSIONS: Coverage of the PE glenoid with cement was reproducible in the fully cemented groups (ie, groups B and C) as compared with relevant cement defects in group A. The addition of cement to the back of the PE glenoid and additional drill holes in the glenoid surface did not improve primary stability in the tested setting.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia , Polietileno , Cimentação/métodos , Artroplastia do Ombro/métodos , Tomografia Computadorizada por Raios X , Cimentos Ósseos , Desenho de Prótese , Falha de Prótese
2.
J Orthop Res ; 39(11): 2485-2496, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33368644

RESUMO

Anatomical shoulder arthroplasties (ASA) may fail because of micromotion at the modular taper junction causing wear due to fretting. Sufficient taper strength can reduce micromotion and potential reasons for failure. However, there are no normative standards for a safe assembly process performed intraoperatively by the surgeon. The purpose of this study is to determine the effect of common intraoperative assembly strategies and to identify critical influencing factors on taper stability. ASA with standard and stemless humeral component in combination with concentric Al2 O3 heads and eccentric CoCr28Mo6 alloyed humeral heads were tested. Taper angles and surface roughness were determined. Force magnitudes and impact directions were recorded using a sensorized head impactor and a three-dimensional force measuring platform. Subsequently, the axial pull-off forces were measured and taper engagement areas were macroscopically evaluated. In comparison to standard stem tapers that were impacted with an assembly device, stemless tapers were impacted into the artificial bone with significantly lower forces. Taper strength correlates to maximum impact force and was higher for CoCr28Mo6 heads with a mean pull-off ratio of 0.56 than for Al2 O3 heads with 0.37. Interestingly, all tapers showed an asymmetric clamping behavior, due to tilting during impaction. This is caused by the variation of the resulting force vector and further promoted by humeral head eccentricity. Assembly technique markedly influences the force magnitude, impact direction, impulse, and consequently taper strength. The resulting force vector and head eccentricity were identified as potential risk factors for taper malalignment.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Prótese de Ombro , Corrosão , Prótese de Quadril/efeitos adversos , Humanos , Fenômenos Mecânicos , Desenho de Prótese , Falha de Prótese
3.
J Shoulder Elbow Surg ; 28(9): 1771-1778, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31029519

RESUMO

BACKGROUND: Wear of the polyethylene glenoid component and subsequent particle-induced osteolysis remains one of the most important modes of failure of total shoulder arthroplasty. Vitamin E is added to polyethylene to act as an antioxidant to stabilize free radicals that exist as a byproduct of irradiation used to induce cross-linking. This study was performed to assess the in vitro performance of vitamin E-enhanced polyethylene compared with conventional polyethylene in a shoulder simulator model. METHODS: Vitamin E-enhanced, highly cross-linked glenoid components were compared with conventional ultrahigh-molecular-weight polyethylene glenoids, both articulating with a ceramic humeral head component using a shoulder joint simulator over 500,000 cycles. Unaged and artificially aged comparisons were performed. Volumetric wear was assessed by gravimetric measurement, and wear particle analysis was also subsequently performed. RESULTS: Vitamin E-enhanced polyethylene glenoid components were found to have significantly reduced wear rates compared with conventional polyethylene in both unaged (36% reduction) and artificially aged (49% reduction) comparisons. There were no differences detected in wear particle analysis between the 2 groups. CONCLUSION: Vitamin E-enhanced polyethylene demonstrates improved wear compared with conventional polyethylene in both unaged and artificially aged comparisons and may have clinically relevant benefits.


Assuntos
Antioxidantes , Polietileno/química , Falha de Prótese , Vitamina E , Artroplastia do Ombro/instrumentação , Cavidade Glenoide , Humanos , Cabeça do Úmero , Teste de Materiais , Polietilenos , Desenho de Prótese , Prótese de Ombro
4.
J Biomech ; 45(3): 469-73, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22206827

RESUMO

The notching phenomenon is one of the major concerns with reversed total shoulder arthroplasty. Repetitive contact between the humeral implant and the scapula (mechanical notching) produces progressive abrasion of the implant if the moving part is made of polyethylene. Its debris may then lead to active osteolysis (biological notching). Inversion of bearing materials, i.e. Glenosphere made of polyethylene and humeral Inlay made of metal, aims at the reduction of this phenomenon. However, the question arises if the tribological behavior would then be different. On an experimental setup, the gravimetric wear of both material configurations was measured after loading and moving over 500,000 cycles. The abrasion of the polyethylene Inlay due to mechanical notching was calculated by means of 3D CAD models with different notching stages. The loss of mass due to gravimetric wear was compared to the loss of mass caused by mechanical notching. After 500,000 cycles the measured amount of wear of the polyethylene components was between 8 and 10 mg for both tribological pairings. The calculated loss of mass of the polyethylene Inlay caused by mechanical notching ranged from 73 to 3881 mg. The results of this study indicate that the gravimetric polyethylene wear in the estimated life-time is very low and not significantly different between both material configurations. However, the polyethylene abrasion due to mechanical notching in the configuration with polyethylene Inlay is by far more important than any gravimetric wear. These results support the continued use of inverted bearings in reversed total shoulder arthroplasty.


Assuntos
Prótese Articular/efeitos adversos , Ombro/fisiologia , Artroplastia de Substituição , Análise de Falha de Equipamento/métodos , Humanos , Polietileno/química , Desenho de Prótese , Ombro/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...