Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(13): 2155-2170, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37133448

RESUMO

Metastatic breast cancer has a poor prognosis and is largely considered incurable. A better understanding of the molecular determinants of breast cancer metastasis could facilitate development of improved prevention and treatment strategies. We used lentiviral barcoding coupled to single-cell RNA sequencing to trace clonal and transcriptional evolution during breast cancer metastasis and showed that metastases derive from rare prometastatic clones that are underrepresented in primary tumors. Both low clonal fitness and high metastatic potential were independent of clonal origin. Differential expression and classification analyses revealed that the prometastatic phenotype was acquired by rare cells characterized by the concomitant hyperactivation of extracellular matrix remodeling and dsRNA-IFN signaling pathways. Notably, genetic silencing of key genes in these pathways (KCNQ1OT1 or IFI6, respectively) significantly impaired migration in vitro and metastasis in vivo, with marginal effects on cell proliferation and tumor growth. Gene expression signatures derived from the identified prometastatic genes predict metastatic progression in patients with breast cancer, independently of known prognostic factors. This study elucidates previously unknown mechanisms of breast cancer metastasis and provides prognostic predictors and therapeutic targets for metastasis prevention. SIGNIFICANCE: Transcriptional lineage tracing coupled with single-cell transcriptomics defined the transcriptional programs underlying metastatic progression in breast cancer, identifying prognostic signatures and prevention strategies.


Assuntos
Perfilação da Expressão Gênica , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Transdução de Sinais/genética , Prognóstico , Matriz Extracelular/genética , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica
2.
J Exp Clin Cancer Res ; 42(1): 20, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639824

RESUMO

BACKGROUND: Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS: We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS: We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS: Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Mama/patologia , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
3.
Cell Mol Life Sci ; 79(4): 216, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348905

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.


Assuntos
MicroRNAs , Neoplasias , Adesão Celular/genética , Movimento Celular/genética , Glucose , Glutamina/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia
4.
Cancer Lett ; 510: 13-23, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33862151

RESUMO

An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential.


Assuntos
Selectina E/antagonistas & inibidores , Células Endoteliais/metabolismo , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Selectina E/biossíntese , Selectina E/metabolismo , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...