Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(3): pgae086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500601

RESUMO

When microscopic droplets are placed between fibers held at a fixed angle, the droplets spontaneously move toward the apex of the fibers. The speed of the droplet motion increases both with the angle between the fibers and the distance the droplet spans across the fibers. The speed of these droplets can be described by a simple scaling relationship. Bending these fibers into a sawtooth geometry results in a droplet ratchet where cyclic motion in a fiber results in extended linear motion of the droplet, and can even be used to induce droplet mergers.

2.
Phys Rev E ; 109(1-1): 014610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366516

RESUMO

We simulate a two-dimensional array of droplets being compressed between two walls. The droplets are adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly broken between a subset of droplets. For monodisperse, hexagonally ordered droplet arrays, this fracture is preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. In small droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be observed. These are fractures nucleated nearly simultaneously in different locations. Finally, we also study the compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events, showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully amorphous arrays. These results are in good agreement with previously published experiments.

3.
Proc Biol Sci ; 290(2011): 20231805, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018098

RESUMO

Synchronization is a conspicuous form of collective behaviour that is of crucial importance in numerous biological systems. Ant colonies from the genera Leptothorax and Temnothorax form small colonies, typically made up of only a few hundred workers, and exhibit a form of synchronized behaviour where workers inside colonies' nests become active together in rhythmic cycles that have a period of approximately 20-200 min. However, it is not currently known if these synchronized rhythms of locomotion confer any functional benefit to colonies. By using a combination of multiple image analysis techniques, we show that inactive Leptothorax ants can act as immobile obstacles to moving ants, and that synchronized activity has the potential to reduce the likelihood that individual ants will encounter regions of immobile obstacles that impede access to portions of the nest. We demonstrate qualitatively similar findings using a computational model of confined active particles with oscillating activity.


Assuntos
Formigas , Animais , Comportamento Social , Locomoção , Comportamento de Nidação
4.
Soft Matter ; 19(20): 3747-3753, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191096

RESUMO

When sand flows out of a funnel onto a surface, a three dimensional pile that is stabilized by friction grows taller as it spreads. Here we investigate an idealized two dimensional analogue: spreading of a pile of monodisperse oil droplets at a boundary. In our system the droplets are buoyant, adhesive, and in contrast to sand, friction is negligible. The buoyant droplets are added to the pile one-at-a-time. As the aggregate grows, it reaches a critical height and the 2D pile spreads out across the barrier. We find that, while granularity is important, the growth process is reminiscent of a continuum liquid. A "granular capillary length", analogous to the capillary length in liquids, sets the critical height of the aggregate through a balance of buoyancy and adhesion. At a coarse-grained level, the granular capillary length is capable of describing both steady-state characteristics and dynamic properties of the system, while at a granular level repeated collapsing events play a critical role in the formation of the pile.

5.
Eur Phys J E Soft Matter ; 46(5): 33, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171676

RESUMO

When polydimethylsiloxane elastomers are produced, in the absence of great care, chains remain that are unbound to the cross-linked matrix. Due to the unbound chains swelling the crosslinked matrix, these materials are gels. We have developed a simple process to prepare well-controlled elastomeric thin films which do not rely on unknown commercial formulations.

6.
Langmuir ; 39(7): 2529-2536, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36763353

RESUMO

Wettability plays a significant role in controlling multiphase flow in porous media for many industrial applications, including geologic carbon dioxide sequestration, enhanced oil recovery, and fuel cells. Microfluidics is a powerful tool to study the complexities of interfacial phenomena involved in multiphase flow in well-controlled geometries. Recently, the thiolene-based polymer called NOA81 emerged as an ideal material in the fabrication of microfluidic devices, since it combines the versatility of conventional soft photolithography with a wide range of achievable wettability conditions. Specifically, the wettability of NOA81 can be continuously tuned through exposure to UV-ozone. Despite its growing popularity, the exact physical and chemical mechanisms behind the wettability alteration have not been fully characterized. Here, we apply different characterization techniques, including contact angle measurements, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) to investigate the impact of UV-ozone on the chemical and physical properties of NOA81 surfaces. We find that UV-ozone exposure increases the oxygen-containing polar functional groups, which enhances the surface energy and hydrophilicity of NOA81. Additionally, our AFM measurements show that spin-coated NOA81 surfaces have a roughness less than a nanometer, which is further reduced after UV-ozone exposure. Lastly, we extend NOA81 use cases by creating (i) 2D surface with controlled wettability gradient and (ii) a 3D column packed with monodisperse NOA81 beads of controlled size and wettability.

7.
Nat Commun ; 13(1): 4436, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907882

RESUMO

When a droplet is placed on a soft surface, surface tension deforms the substrate, creating a capillary ridge. We study how the motion of the ridge dissipates energy in microscopic droplets. Using a micropipette based method, we are able to simultaneously image and measure forces on a microscopic droplet moving at a constant speed along a soft film supported on a rigid substrate. Changing the thickness of the thin film tunes the effective stiffness of the substrate. Thus we can control the ridge size without altering the surface chemistry. We find that the dissipation depends strongly on the film thickness, decreasing monotonically as effective stiffness increases. This monotonic trend is beyond the realm of small deformation theory, but can be explained with a simple scaling analysis.

8.
R Soc Open Sci ; 9(3): 211908, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35291326

RESUMO

Biology is suffused with rhythmic behaviour, and interacting biological oscillators often synchronize their rhythms with one another. Colonies of some ant species are able to synchronize their activity to fall into coherent bursts, but models of this phenomenon have neglected the potential effects of intrinsic noise and interspecific differences in individual-level behaviour. We investigated the individual and collective activity patterns of two Leptothorax ant species. We show that in one species (Leptothorax sp. W), ants converge onto rhythmic cycles of synchronized collective activity with a period of about 20 min. A second species (Leptothorax crassipilis) exhibits more complex collective dynamics, where dominant collective cycle periods range from 16 min to 2.8 h. Recordings that last 35 h reveal that, in both species, the same colony can exhibit multiple oscillation frequencies. We observe that workers of both species can be stimulated by nest-mates to become active after a refractory resting period, but the durations of refractory periods differ between the species and can be highly variable. We model the emergence of synchronized rhythms using an agent-based model informed by our empirical data. This simple model successfully generates synchronized group oscillations despite the addition of noise to ants' refractory periods. We also find that adding noise reduces the likelihood that the model will spontaneously switch between distinct collective cycle frequencies.

9.
Soft Matter ; 18(7): 1364-1370, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35043822

RESUMO

Small droplets on slender conical fibers spontaneously move along the fiber due to capillary action. The droplet motion depends on the geometry of the cone, the surface wettability, the surface tension, the viscosity, and the droplet size. Here we study with experiments and numerical simulations, the formation, spontaneous motion, and the eventual merger, of multiple droplets on slender conical fibers as they interact with each other. The droplet size and their spacing on the fibre is controlled by the Plateau-Rayleigh instability after dip-coating the conical fiber. Once these droplets are formed on the fiber, they spontaneously start to move. Since droplets of different size move with different speeds, they effectively coarsen the droplet patterning by merging on the fiber. The droplet merging process affects locally the droplet speed and alters the spatiotemporal film deposition on the fiber.

10.
Eur Phys J E Soft Matter ; 44(12): 149, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905133

RESUMO

The buckling and twisting of slender, elastic fibers is a deep and well-studied field. A slender elastic rod that is twisted with respect to a fixed end will spontaneously form a loop, or hockle, to relieve the torsional stress that builds. Further twisting results in the formation of plectonemes-a helical excursion in the fiber that extends with additional twisting. Here we use an idealized, micron-scale experiment to investigate the energy stored, and subsequently released, by hockles and plectonemes as they are pulled apart, in analogy with force spectroscopy studies of DNA and protein folding. Hysteresis loops in the snapping and unsnapping inform the stored energy in the twisted fiber structures.


Assuntos
DNA , Tecido Elástico
11.
Phys Rev Lett ; 127(21): 218001, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860103

RESUMO

We study the elastocapillary interaction between flexible microfibers in contact with bubbles trapped at the surface of a liquid bath. Microfibers placed on top of bubbles are found to migrate to and wrap into a coil around the perimeter of the bubble for certain bubble-fiber size combinations. The wrapping process is spontaneous: the coil spins atop the bubble, thereby drawing in excess fiber floating on the bath. A two-dimensional microfiber coil emerges which increases the lifetime of the bubbles. A simple model incorporating surface and bending energies captures the spontaneous winding process.

12.
Eur Phys J E Soft Matter ; 44(2): 12, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683481

RESUMO

The spontaneous migration of droplets on conical fibers is studied experimentally by depositing silicone oil droplets onto conical glass fibers. Their motion is recorded using optical microscopy and analyzed to extract the relevant geometrical parameters of the system. The speed of the droplet can be predicted as a function of geometry and the fluid properties using a simple theoretical model, which balances viscous dissipation against the surface tension driving force. The experimental data are found to be in good agreement with the model.

13.
Soft Matter ; 17(5): 1194-1201, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33336662

RESUMO

We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.

14.
Phys Rev Lett ; 125(22): 228001, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315448

RESUMO

We investigate the growth of aggregates made of adhesive frictionless oil droplets, piling up against a solid interface. Monodisperse droplets are produced one by one in an aqueous solution and float upward to the top of a liquid cell where they accumulate and form an aggregate at a flat horizontal interface. Initially, the aggregate grows in 3D until its height reaches a critical value. Beyond a critical height, adding more droplets results in the aggregate spreading in 2D along the interface with a constant height. We find that the shape of such aggregates, despite being granular in nature, is well described by a continuum model. The geometry of the aggregates is determined by a balance between droplet buoyancy and adhesion as given by a single parameter, a "granular" capillary length, analogous to the capillary length of a liquid.

15.
Sci Rep ; 10(1): 13578, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782266

RESUMO

Collective motion is found at all scales in biological and artificial systems, and extensive research is devoted to describing the interplay between interactions and external cues in collective dynamics. Magnetotactic bacteria constitute a remarkable example of living organisms for which motion can be easily controlled remotely. Here, we report a new type of collective motion where a uniform distribution of magnetotactic bacteria is rendered unstable by a magnetic field. A new state of "bacterial magneto-convection" results, wherein bacterial plumes emerge spontaneously perpendicular to an interface and develop into self-sustained flow convection cells. While there are similarities to gravity driven bioconvection and the Rayleigh-Bénard instability, these rely on a density mismatch between layers of the fluids. Remarkably, here no external forces are applied on the fluid and the magnetic field only exerts an external torque aligning magnetotactic bacteria with the field. Using a theoretical model based on hydrodynamic singularities, we capture quantitatively the instability and the observed long-time growth. Bacterial magneto-convection represents a new class of collective behaviour resulting only from the balance between hydrodynamic interactions and external alignment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Convecção , Hidrodinâmica , Campos Magnéticos , Magnetospirillum/fisiologia , Modelos Teóricos
16.
Phys Rev Lett ; 124(18): 184502, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441970

RESUMO

We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is found to depend on the membrane thickness, surface tension, and viscosity.

17.
Eur Phys J E Soft Matter ; 43(4): 20, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32303847

RESUMO

Periodic wrinkling of a rigid capping layer on a deformable substrate provides a useful method for templating surface topography for a variety of novel applications. Many experiments have studied wrinkle formation during the compression of a rigid film on a relatively soft pre-strained elastic substrate, and most have focused on the regime where the substrate thickness can be considered semi-infinite relative to that of the film. As the relative thickness of the substrate is decreased, the bending stiffness of the film dominates, causing the bilayer to transition to either local wrinkling or a global buckling instability. In this work optical microscopy was used to study the critical parameters that determine the emergence of local wrinkling or global buckling of freestanding bilayer films consisting of a thin rigid polymer capping layer on a pre-strained elastomeric substrate. The thickness ratio of the film and substrate as well as the pre-strain were controlled and used to create a buckling phase diagram which describes the behaviour of the system as the ratio of the thickness of the substrate is decreased. A simple force balance model was developed to understand the thickness and strain dependences of the wrinkling and buckling modes, with excellent quantitative agreement being obtained with experiments using only independently measured material parameters.

18.
Soft Matter ; 14(18): 3557-3562, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29682670

RESUMO

We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The morphology of holes and rim stability can be controlled by changing the boundary conditions and tension in the capping film. When the capping film is prepared with a biaxial tension, holes form with a non-circular shape elongated along the high tension axis. With suitable choice of elastic boundary conditions, samples can even be designed such that square holes appear.

19.
Nat Commun ; 9(1): 982, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515162

RESUMO

Surface stress and surface energy are fundamental quantities which characterize the interface between two materials. Although these quantities are identical for interfaces involving only fluids, the Shuttleworth effect demonstrates that this is not the case for most interfaces involving solids, since their surface energies change with strain. Crystalline materials are known to have strain-dependent surface energies, but in amorphous materials, such as polymeric glasses and elastomers, the strain dependence is debated due to a dearth of direct measurements. Here, we utilize contact angle measurements on strained glassy and elastomeric solids to address this matter. We show conclusively that interfaces involving polymeric glasses exhibit strain-dependent surface energies, and give strong evidence for the absence of such a dependence for incompressible elastomers. The results provide fundamental insight into our understanding of the interfaces of amorphous solids and their interaction with contacting liquids.

20.
Eur Phys J E Soft Matter ; 41(3): 36, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29564573

RESUMO

In this study, thin elastic films supported on a rigid substrate are brought into contact with a spherical glass indenter. Upon contact, adhesive fingers emerge at the periphery of the contact patch with a characteristic wavelength. Elastic films are also pre-strained along one axis before the initiation of contact, causing the fingering pattern to become anisotropic and align with the axis along which the strain was applied. This transition from isotropic to anisotropic patterning is characterized quantitatively and a simple model is developed to understand the origin of the anisotropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...