Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Crit Care Med ; 20(1): 62-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431557

RESUMO

OBJECTIVES: Limited data exist on the effects of extracorporeal membrane oxygenation on pharmacokinetics of cefepime in critically ill pediatric patients. The objective was to describe cefepime disposition in children treated with extracorporeal membrane oxygenation using population pharmacokinetic modeling. DESIGN: Multicenter, prospective observational study. SETTING: The pediatric and cardiac ICUs of six sites of the Collaborative Pediatric Critical Care Research Network. PATIENTS: Seventeen critically ill children (30 d to < 2 yr old) on extracorporeal membrane oxygenation who received cefepime as standard of care between January 4, 2014, and August 24, 2015, were enrolled. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A pharmacokinetic model was developed to evaluate cefepime disposition differences due to extracorporeal membrane oxygenation. A two-compartment model with linear elimination, weight effects on clearance, intercompartmental clearance (Q), central volume of distribution (V1), and peripheral volume of distribution (V2) adequately described the data. The typical value of clearance in this study was 7.1 mL/min (1.9 mL/min/kg) for a patient weighing 5.8 kg. This value decreased by approximately 40% with the addition of renal replacement therapy. The typical value for V1 was 1,170 mL. In the setting of blood transfusions, V1 increased by over two-fold but was reduced with increasing age of the extracorporeal membrane oxygenation circuit oxygenator. CONCLUSIONS: Cefepime clearance was reduced in pediatric patients treated with extracorporeal membrane oxygenation compared with previously reported values in children not receiving extracorporeal membrane oxygenation. The model demonstrated that the age of the extracorporeal membrane oxygenation circuit oxygenator is inversely correlated to V1. For free cefepime, only 14 of the 19 doses (74%) demonstrated a fT_minimum inhibitory concentration of 16 mg/L, an appropriate target for the treatment of pseudomonal infections, for greater than 70% of the dosing interval. Pediatric patients on extracorporeal membrane oxygenation might benefit from the addition of therapeutic drug monitoring of cefepime to assure appropriate dosing.


Assuntos
Antibacterianos/farmacocinética , Cefepima/farmacocinética , Oxigenação por Membrana Extracorpórea/métodos , Peso Corporal , Estado Terminal , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Ligação Proteica/fisiologia
2.
Pediatric Health Med Ther ; 7: 45-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29388637

RESUMO

The development of the membrane oxygenator for pediatric cardiopulmonary bypass has been an incorporation of ideology and technological advancements with contributions by many investigators throughout the past two centuries. With the pursuit of this technological achievement, the ability to care for mankind in the areas of cardiac surgery has been made possible. Heart disease can affect anyone within the general population, but one such segment that it can affect from inception includes children. Currently, congenital heart defects are the most common birth defects nationally and worldwide. A large meta-analysis study from 1930 to 2010 was conducted in review of published medical literature totaling 114 papers with a study population of 24,091,867 live births, and divulged a staggering incidence of congenital heart disease involving 164,396 subjects with diverse cardiac illnesses. The prevalence of these diseases increased from 0.6 per 1,000 live births from 1930-1934 to 9.1 per 1,000 live births after 1995. These data reveal an emphasis on a growing public health issue regarding congenital heart disease. This discovery displays a need for heightened awareness in the scientific and medical industrial community to accelerate investigative research on emerging cardiovascular devices in an effort to confront congenital anomalies. One such device that has evolved over the past several decades is the pediatric membrane oxygenator. The pediatric membrane oxygenator, in conjunction with the heart lung machine, assists in the repair of most congenital cardiac defects. Numerous children born with congenital heart disease with or without congestive heart failure have experienced improved clinical outcomes in quality of life, survival, and mortality as a result of the inclusion of this technology during their cardiac surgical procedure. The purpose of this review is to report a summary of the published medical and scientific literature related to development of the pediatric membrane oxygenator from its conceptual evolutionary stages to artificially supporting whole body perfusion in the modern pediatric cardiac surgical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA