Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 34(5): 241-260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415962

RESUMO

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Assuntos
Lobo Temporal , Humanos , Lobo Temporal/patologia , Neuroanatomia/métodos , Masculino , Giro Para-Hipocampal/patologia , Giro Para-Hipocampal/diagnóstico por imagem , Feminino , Idoso , Córtex Entorrinal/patologia , Córtex Entorrinal/anatomia & histologia , Laboratórios , Idoso de 80 Anos ou mais
2.
J Neurol ; 271(5): 2509-2520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38265470

RESUMO

Amygdala atrophy has been found in frontotemporal dementia (FTD), yet the specific changes of its subregions across different FTD phenotypes remain unclear. The aim of this study was to investigate the volumetric alterations of the amygdala subregions in FTD phenotypes and how they evolve with disease progression. Patients clinically diagnosed with behavioral variant FTD (bvFTD) (n = 20), semantic dementia (SD) (n = 20), primary nonfluent aphasia (PNFA) (n = 20), Alzheimer's disease (AD) (n = 20), and 20 matched healthy controls underwent whole brain structural MRI. The patient groups were followed up annually for up to 3.5 years. Amygdala nuclei were segmented using FreeSurfer, corrected by total intracranial volumes, and grouped into the basolateral, superficial, and centromedial subregions. Linear mixed effects models were applied to identify changes in amygdala subregional volumes over time. At baseline, bvFTD, SD, and AD displayed global amygdala volume reduction, whereas amygdala volume appeared to be preserved in PNFA. Asymmetrical amygdala atrophy (left > right) was most pronounced in SD. Longitudinally, SD and PNFA showed greater rates of annual decline in the right basolateral and superficial subregions compared to bvFTD and AD. The findings provide comprehensive insights into the differential impact of FTD pathology on amygdala subregions, revealing distinct atrophy patterns that evolve over disease progression. The characterization of amygdala subregional involvement in FTD and their potential role as biomarkers carry substantial clinical implications.


Assuntos
Tonsila do Cerebelo , Atrofia , Progressão da Doença , Demência Frontotemporal , Imageamento por Ressonância Magnética , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Atrofia/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia
3.
Neurobiol Aging ; 135: 70-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232501

RESUMO

Mounting evidence indicates marked hippocampal degeneration in semantic dementia (SD) however, the spatial distribution of hippocampal atrophy profiles in this syndrome remains unclear. Using a recently developed parcellation approach, we extracted hippocampal volumes from four distinct subregions running from anterior to posterior along the longitudinal axis (anterior, intermediate rostral, intermediate caudal, and posterior). Volumetric differences in hippocampal subregions were compared between 21 SD, 24 matched Alzheimer's disease (AD), and 27 healthy older Control participants. Despite comparable overall hippocampal volume loss, SD and AD groups diverged in terms of the magnitude of atrophy along the anterior-posterior axis of the hippocampus. Global hippocampal atrophy was observed in AD, with no discernible gradation or lateralisation. In contrast, SD patients displayed graded bilateral hippocampal atrophy, most pronounced on the left-hand side, and concentrated in anterior relative to posterior subregions. Finally, we found preliminary evidence that disease-specific vulnerability along the anterior-posterior axis of the hippocampus was associated with canonical clinical features of these syndromes.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Atrofia/patologia , Imageamento por Ressonância Magnética
4.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37292729

RESUMO

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

5.
Sci Rep ; 13(1): 7924, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193748

RESUMO

People vary substantially in their capacity to recall past experiences, known as autobiographical memories. Here we investigated whether the volumes of specific hippocampal subfields were associated with autobiographical memory retrieval ability. We manually segmented the full length of the two hippocampi in 201 healthy young adults into DG/CA4, CA2/3, CA1, subiculum, pre/parasubiculum and uncus, in the largest such manually segmented subfield sample yet reported. Across the group we found no evidence for an association between any subfield volume and autobiographical memory recall ability. However, when participants were assigned to lower and higher performing groups based on their memory recall scores, we found that bilateral CA2/3 volume was significantly and positively associated with autobiographical memory recall performance specifically in the lower performing group. We further observed that this effect was attributable to posterior CA2/3. By contrast, semantic details from autobiographical memories, and performance on a range of laboratory-based memory tests, did not correlate with CA2/3 volume. Overall, our findings highlight that posterior CA2/3 may be particularly pertinent for autobiographical memory recall. They also reveal that there may not be direct one-to-one mapping of posterior CA2/3 volume with autobiographical memory ability, with size mattering perhaps only in those with poorer memory recall.


Assuntos
Memória Episódica , Adulto Jovem , Humanos , Região CA3 Hipocampal , Hipocampo , Rememoração Mental , Transtornos da Memória , Imageamento por Ressonância Magnética
6.
Elife ; 112022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36345716

RESUMO

The hippocampus supports multiple cognitive functions including episodic memory. Recent work has highlighted functional differences along the anterior-posterior axis of the human hippocampus, but the neuroanatomical underpinnings of these differences remain unclear. We leveraged track-density imaging to systematically examine anatomical connectivity between the cortical mantle and the anterior-posterior axis of the in vivo human hippocampus. We first identified the most highly connected cortical areas and detailed the degree to which they preferentially connect along the anterior-posterior axis of the hippocampus. Then, using a tractography pipeline specifically tailored to measure the location and density of streamline endpoints within the hippocampus, we characterised where these cortical areas preferentially connect within the hippocampus. Our results provide new and detailed insights into how specific regions along the anterior-posterior axis of the hippocampus are associated with different cortical inputs/outputs and provide evidence that both gradients and circumscribed areas of dense extrinsic anatomical connectivity exist within the human hippocampus. These findings inform conceptual debates in the field and emphasise the importance of considering the hippocampus as a heterogeneous structure. Overall, our results represent a major advance in our ability to map the anatomical connectivity of the human hippocampus in vivo and inform our understanding of the neural architecture of hippocampal-dependent memory systems in the human brain.


The brain allows us to perceive and interact with our environment and to create and recall memories about our day-to-day lives. A sea-horse shaped structure in the brain, called the hippocampus, is critical for translating our perceptions into memories, and it does so in coordination with other brain regions. For example, different regions of the cerebral cortex (the outer layer of the brain) support different aspects of cognition, and pathways of information flow between the cerebral cortex and hippocampus underpin the healthy functioning of memory. Decades of research conducted into the brains of non-human primates show that specific regions of the cerebral cortex anatomically connect with different parts of the hippocampus to support this information flow. These insights form the foundation for existing theoretical models of how networks of neurons in the hippocampus and the cerebral cortex are connected. However, the human cerebral cortex has greatly expanded during our evolution, meaning that patterns of connectivity in the human brain may diverge from those in the brains of non-human primates. Deciphering human brain circuits in greater detail is crucial if we are to gain a better understanding of the structure and operation of the healthy human brain. However, obtaining comprehensive maps of anatomical connections between the hippocampus and cerebral cortex has been hampered by technical limitations. For example, magnetic resonance imaging (MRI), an approach that can be used to study the living human brain, suffers from insufficient image resolution. To overcome these issues, Dalton et al. used an imaging technique called diffusion weighted imaging which is used to study white matter pathways in the brain. They developed a tailored approach to create high-resolution maps showing how the hippocampus anatomically connects with the cerebral cortex in the healthy human brain. Dalton et al. produced detailed maps illustrating which areas of the cerebral cortex have high anatomical connectivity with the hippocampus and how different parts of the hippocampus preferentially connect to different neural circuits in the cortex. For example, the experiments demonstrate that highly connected areas in a cortical region called the temporal cortex connect to very specific, circumscribed regions within the hippocampus. These findings suggest that the hippocampus may consist of different neural circuits, each preferentially linked to defined areas of the cortex which are, in turn, associated with specific aspects of cognition. These observations further our knowledge of hippocampal-dependant memory circuits in the human brain and provide a foundation for the study of memory decline in aging and neurodegenerative diseases.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Vias Neurais , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Encéfalo
7.
Cortex ; 137: 1-17, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571913

RESUMO

The precise role played by the hippocampus in supporting cognitive functions such as episodic memory and future thinking is debated, but there is general agreement that it involves constructing representations comprised of numerous elements. Visual scenes have been deployed extensively in cognitive neuroscience because they are paradigmatic multi-element stimuli. However, questions remain about the specificity and nature of the hippocampal response to scenes. Here, we devised a paradigm in which we had participants search pairs of images for either colour or layout differences, thought to be associated with perceptual or spatial constructive processes respectively. Importantly, images depicted either naturalistic scenes or phase-scrambled versions of the same scenes, and were either simple or complex. Using this paradigm during functional MRI scanning, we addressed three questions: 1. Is the hippocampus recruited specifically during scene processing? 2. If the hippocampus is more active in response to scenes, does searching for colour or layout differences influence its activation? 3. Does the complexity of the scenes affect its response? We found that, compared to phase-scrambled versions of the scenes, the hippocampus was more responsive to scene stimuli. Moreover, a clear anatomical distinction was evident, with colour detection in scenes engaging the posterior hippocampus whereas layout detection in scenes recruited the anterior hippocampus. The complexity of the scenes did not influence hippocampal activity. These findings seem to align with perspectives that propose the hippocampus is especially attuned to scenes, and its involvement occurs irrespective of the cognitive process or the complexity of the scenes.


Assuntos
Mapeamento Encefálico , Memória Episódica , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Percepção
8.
J Cogn Neurosci ; 33(1): 89-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32985945

RESUMO

The hippocampus and ventromedial prefrontal cortex (vmPFC) play key roles in numerous cognitive domains including mind-wandering, episodic memory, and imagining the future. Perspectives differ on precisely how they support these diverse functions, but there is general agreement that it involves constructing representations composed of numerous elements. Visual scenes have been deployed extensively in cognitive neuroscience because they are paradigmatic multielement stimuli. However, it remains unclear whether scenes, rather than other types of multifeature stimuli, preferentially engage hippocampus and vmPFC. Here, we leveraged the high temporal resolution of magnetoencephalography to test participants as they gradually built scene imagery from three successive auditorily presented object descriptions and an imagined 3-D space. This was contrasted with constructing mental images of nonscene arrays that were composed of three objects and an imagined 2-D space. The scene and array stimuli were, therefore, highly matched, and this paradigm permitted a closer examination of step-by-step mental construction than has been undertaken previously. We observed modulation of theta power in our two regions of interest-anterior hippocampus during the initial stage and vmPFC during the first two stages, of scene relative to array construction. Moreover, the scene-specific anterior hippocampal activity during the first construction stage was driven by the vmPFC, with mutual entrainment between the two brain regions thereafter. These findings suggest that hippocampal and vmPFC neural activity is especially tuned to scene representations during the earliest stage of their formation, with implications for theories of how these brain areas enable cognitive functions such as episodic memory.


Assuntos
Imageamento por Ressonância Magnética , Memória Episódica , Hipocampo/diagnóstico por imagem , Humanos , Córtex Pré-Frontal/diagnóstico por imagem
9.
Conscious Cogn ; 79: 102885, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036278

RESUMO

The human brain has a tendency to drift into the realm of internally-generated thoughts that are unbound by space and time. The term mind-wandering (MW) is often used describe such thoughts when they are perceptually decoupled. Evidence suggests that exposure to forward and backward illusory motion skews the temporal orientation of MW thoughts to either the future or past respectively. However, little is known about the impact of this manipulation on other features of MW. Here, using a novel experimental paradigm, we first confirmed that our illusory motion method facilitated the generation of MW thoughts congruent with the direction of motion. We then conducted content analyses which revealed that goal orientation and temporal distance were also significantly affected by the direction of illusory motion. We conclude that illusory motion may be an effective means of assaying MW and could help to elucidate this ubiquitous, and likely critical, component of cognition.


Assuntos
Atenção/fisiologia , Imaginação/fisiologia , Percepção de Movimento/fisiologia , Percepção Espacial/fisiologia , Pensamento/fisiologia , Adulto , Avaliação Momentânea Ecológica , Feminino , Humanos , Cinestesia/fisiologia , Masculino , Adulto Jovem
10.
Hippocampus ; 29(11): 1049-1062, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31058404

RESUMO

While age-related volumetric changes in human hippocampal subfields have been reported, little is known about patterns of subfield functional connectivity (FC) in the context of healthy ageing. Here we investigated age-related changes in patterns of FC down the anterior-posterior axis of each subfield. Using high resolution structural MRI we delineated the dentate gyrus (DG), CA fields (including separating DG from CA3), the subiculum, pre/parasubiculum, and the uncus in healthy young and older adults. We then used high resolution resting state functional MRI to measure FC in each group and to directly compare them. We first examined the FC of each subfield in its entirety, in terms of FC with other subfields and with neighboring cortical regions, namely, entorhinal, perirhinal, posterior parahippocampal, and retrosplenial cortices. Next, we analyzed subfield to subfield FC within different portions along the hippocampal anterior-posterior axis, and FC of each subfield portion with the neighboring cortical regions of interest. In general, the FC of the older adults was similar to that observed in the younger adults. We found that, as in the young group, the older group displayed intrinsic FC between the subfields that aligned with the tri-synaptic circuit but also extended beyond it, and that FC between the subfields and neighboring cortical areas differed markedly along the anterior-posterior axis of each subfield. We observed only one significant difference between the young and older groups. Compared to the young group, the older participants had significantly reduced FC between the anterior CA1-subiculum transition region and the transentorhinal cortex, two brain regions known to be disproportionately affected during the early stages of age-related tau accumulation. Overall, these results contribute to ongoing efforts to characterize human hippocampal subfield connectivity, with implications for understanding hippocampal function and its modulation in the ageing brain.


Assuntos
Envelhecimento/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Adulto Jovem
11.
Neuroimage ; 192: 38-51, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30840906

RESUMO

There is a paucity of information about how human hippocampal subfields are functionally connected to each other and to neighbouring extra-hippocampal cortices. In particular, little is known about whether patterns of functional connectivity (FC) differ down the anterior-posterior axis of each subfield. Here, using high resolution structural MRI we delineated the hippocampal subfields in healthy young adults. This included the CA fields, separating DG/CA4 from CA3, separating the pre/parasubiculum from the subiculum, and also segmenting the uncus. We then used high resolution resting state functional MRI to interrogate FC. We first analysed the FC of each hippocampal subfield in its entirety, in terms of FC with other subfields and with the neighbouring regions, namely entorhinal, perirhinal, posterior parahippocampal and retrosplenial cortices. Next, we analysed FC for different portions of each hippocampal subfield along its anterior-posterior axis, in terms of FC between different parts of a subfield, FC with other subfield portions, and FC of each subfield portion with the neighbouring cortical regions of interest. We found that intrinsic functional connectivity between the subfields aligned generally with the tri-synaptic circuit but also extended beyond it. Our findings also revealed that patterns of functional connectivity between the subfields and neighbouring cortical areas differed markedly along the anterior-posterior axis of each hippocampal subfield. Overall, these results contribute to ongoing efforts to characterise human hippocampal subfield connectivity, with implications for understanding hippocampal function.


Assuntos
Hipocampo/anatomia & histologia , Vias Neurais/anatomia & histologia , Feminino , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
12.
J Neurosci ; 38(38): 8146-8159, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30082418

RESUMO

The hippocampus is known to be important for a range of cognitive functions, including episodic memory, spatial navigation, and thinking about the future. However, researchers have found it difficult to agree on the exact nature of this brain structure's contribution to cognition. Some theories emphasize the role of the hippocampus in associative processes. Another theory proposes that scene construction is its primary role. To directly compare these accounts of hippocampal function in human males and females, we devised a novel mental imagery paradigm where different tasks were closely matched for associative processing and mental construction, but either did or did not evoke scene representations, and we combined this with high-resolution functional MRI. The results were striking in showing that different parts of the hippocampus, along with distinct cortical regions, were recruited for scene construction or nonscene-evoking associative processing. The contrasting patterns of neural engagement could not be accounted for by differences in eye movements, mnemonic processing, or the phenomenology of mental imagery. These results inform conceptual debates in the field by showing that the hippocampus does not seem to favor one type of process over another; it is not a story of exclusivity. Rather, there may be different circuits within the hippocampus, each associated with different cortical inputs, which become engaged depending on the nature of the stimuli and the task at hand. Overall, our findings emphasize the importance of considering the hippocampus as a heterogeneous structure, and that a focus on characterizing how specific portions of the hippocampus interact with other brain regions may promote a better understanding of its role in cognition.SIGNIFICANCE STATEMENT The hippocampus is known to be important for a range of cognitive functions, including episodic memory, spatial navigation, and thinking about the future. However, researchers have found it difficult to agree on the exact nature of this brain structure's contribution to cognition. Here we used a novel mental imagery paradigm and high-resolution functional MRI to compare accounts of hippocampal function that emphasize associative processes with a theory that proposes scene construction as a primary role. The results were striking in showing that different parts of the hippocampus, along with distinct cortical regions, were recruited for scene construction or nonscene-evoking associative processing. We conclude that a greater emphasis on characterizing how specific portions of the hippocampus interact with other brain regions may promote a better understanding of its role in cognition.


Assuntos
Hipocampo/diagnóstico por imagem , Imaginação/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Movimentos Oculares/fisiologia , Feminino , Neuroimagem Funcional , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Testes Neuropsicológicos , Caracteres Sexuais
13.
Curr Opin Behav Sci ; 17: 34-40, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29167810

RESUMO

Internal representations of the world in the form of spatially coherent scenes have been linked with cognitive functions including episodic memory, navigation and imagining the future. In human neuroimaging studies, a specific hippocampal subregion, the pre/parasubiculum, is consistently engaged during scene-based cognition. Here we review recent evidence to consider why this might be the case. We note that the pre/parasubiculum is a primary target of the parieto-medial temporal processing pathway, it receives integrated information from foveal and peripheral visual inputs and it is contiguous with the retrosplenial cortex. We discuss why these factors might indicate that the pre/parasubiculum has privileged access to holistic representations of the environment and could be neuroanatomically determined to preferentially process scenes.

14.
Brain Neurosci Adv ; 1: 2398212817701448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596993

RESUMO

BACKGROUND: The hippocampus plays a central role in cognition, and understanding the specific contributions of its subregions will likely be key to explaining its wide-ranging functions. However, delineating substructures within the human hippocampus in vivo from magnetic resonance image scans is fraught with difficulties. To our knowledge, the extant literature contains only brief descriptions of segmentation procedures used to delineate hippocampal subregions in magnetic resonance imaging/functional magnetic resonance imaging studies. METHODS: Consequently, here we provide a clear, step-by-step and fully illustrated guide to segmenting hippocampal subregions along the entire length of the human hippocampus on 3T magnetic resonance images. RESULTS: We give a detailed description of how to segment the hippocampus into the following six subregions: dentate gyrus/Cornu Ammonis 4, CA3/2, CA1, subiculum, pre/parasubiculum and the uncus. Importantly, this in-depth protocol incorporates the most recent cyto- and chemo-architectural evidence and includes a series of comprehensive figures which compare slices of histologically stained tissue with equivalent 3T images. CONCLUSION: As hippocampal subregion segmentation is an evolving field of research, we do not suggest this protocol is definitive or final. Rather, we present a fully explained and expedient method of manual segmentation which remains faithful to our current understanding of human hippocampal neuroanatomy. We hope that this 'tutorial'-style guide, which can be followed by experts and non-experts alike, will be a practical resource for clinical and research scientists with an interest in the human hippocampus.

15.
J Vis Exp ; (117)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27929471

RESUMO

The rate of neurogenesis within the adult hippocampus has been shown to vary across mammalian species. The canine hippocampus, demonstrating a structural intermediacy between the rodent and human hippocampi, is therefore a valuable model in which to study adult neurogenesis. In vitro culture assays are an essential component of characterizing neurogenesis and adult neural precursor cells, allowing for precise control over the cellular environment. To date however, culture protocols for canine cells remain under-represented in the literature. Detailed here are systematic protocols for the isolation and culture of hippocampal neural precursor cells from the adult canine brain. We demonstrate the expansion of canine neural precursor cells as floating neurospheres and as an adherent monolayer culture, producing stable cell lines that are able to differentiation into mature neural cell types in vitro. Adult canine neural precursors are an underused resource that may provide a more faithful analogue for the study of human neural precursors and the cellular mechanisms of adult neurogenesis.


Assuntos
Hipocampo , Modelos Animais , Células-Tronco Neurais , Neurogênese , Animais , Diferenciação Celular , Cães , Humanos , Neurônios
16.
Hum Brain Mapp ; 37(3): 933-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700110

RESUMO

The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL.


Assuntos
Percepção Auditiva/fisiologia , Lateralidade Funcional/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Circulação Cerebrovascular/fisiologia , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
17.
Biol Psychiatry ; 71(9): 783-91, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22055015

RESUMO

BACKGROUND: An active cognitive lifestyle is linked to diminished dementia risk, but the underlying mechanisms are poorly understood. Potential mechanisms include disease modification, neuroprotection, and compensation. Prospective, population-based brain series provide the rare opportunity to test the plausibility of these mechanisms in humans. METHODS: Participants came from the United Kingdom Medical Research Council Cognitive Function and Ageing Study, comprising 13,004 individuals aged over 65 years and followed for 14 years. In study 1, a Cognitive Lifestyle Score (CLS) was computed on all Cognitive Function and Ageing Study subjects to define low, middle, and high groups. By August 2004, 329 individuals with CLS data had come to autopsy and underwent Consortium to Establish a Registry of Alzheimer's Disease assessment. Study 2 involved more detailed quantitative histology in the hippocampus and Brodmann area 9 in 72 clinically matched individuals with high and low CLS. RESULTS: CLS groups did not differ on several Alzheimer disease neuropathologic measures; however, high CLS men had less cerebrovascular disease after accounting for vascular risk factors, and women had greater brain weight. No group differences were evident in hippocampal neuronal density. In Brodmann area 9, cognitively active individuals had significantly greater neuronal density, as well as correlated increases in cortical thickness. CONCLUSIONS: An active cognitive lifestyle was associated with protection from cerebrovascular disease in men, but there was no evidence for Alzheimer disease modification or hippocampal neuroprotection. Men and women both exhibited neurotrophic changes in the prefrontal lobe linked to cognitive lifestyle, consistent with a compensatory process. Lifespan complex cognitive activity may therefore protect against dementia through multiple biological pathways.


Assuntos
Cognição , Demência/patologia , Demência/psicologia , Hipocampo/patologia , Córtex Pré-Frontal/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Encéfalo/patologia , Contagem de Células/métodos , Contagem de Células/estatística & dados numéricos , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/patologia , Demência/complicações , Feminino , Humanos , Hipertrofia/patologia , Estilo de Vida , Masculino , Neurônios/patologia , Caracteres Sexuais
18.
Neuroimage Clin ; 2: 56-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24179759

RESUMO

Frontotemporal dementia (FTD) is classically considered to be a neurodegenerative disease with cortical changes. Recent structural imaging findings, however, highlight that subcortical and in particular striatal regions are also affected in the FTD syndrome. The influence of striatal pathology on cognitive and behavioural changes in FTD is virtually unexplored. In the current study we employ the Weather Prediction Task (WPT), a probabilistic learning task which taps into striatal dysfunction, in a group of FTD patients. We also regressed the patients' behavioural performance with their grey matter atrophy via voxel-based morphometry (VBM) to identify the grey matter contributions to WPT performance in FTD. Based on previous studies we expected to see striatal and frontal atrophy to be involved in impaired probabilistic learning. Our behavioural results show that patients performed on a similar level to controls overall, however, there was a large variability of patient performance in the first 30 trials of the task, which are critical in the acquisition of the probabilistic learning rules. A VBM analysis covarying the performance for the first 30 trials across participants showed that atrophy in striatal but also frontal brain regions correlated with WPT performance in these trials. Closer inspection of performance across the first 30 trials revealed a subgroup of FTD patients that performed significantly poorly than the remaining patients and controls on the WPT, despite achieving the same level of probabilistic learning as the other groups in later trials. Additional VBM analyses revealed that the subgroup of FTD patients with poor early probabilistic learning in the first 30 trials showed greater striatal atrophy compared to the remaining FTD patients and controls. These findings suggest that the integrity of fronto-striatal regions is important for probabilistic learning in FTD, with striatal integrity in particular, determining the acquisition learning rate. These findings will therefore have implications for developing an easily administered version of the probabilistic learning task which can be used by clinicians to assess striatal functioning in neurodegenerative syndromes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...