Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 38(6): 896-907, 1999 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18305689

RESUMO

The problems encountered in the elaboration of measurements of direct and sky diffuse solar irradiance are the following: (1) to carry out the calibration for the direct irradiance, which consists in determining the direct irradiance at the upper limit of the atmosphere; (2) to carry out the calibration for the diffuse irradiance, which consists in determining the solid viewing angle of the sky radiometer; (3) to determine the input parameters, namely, ground albedo, real and imaginary parts of the aerosol refractive index, and aerosol radius range; and (4) to determine from the optical data the columnar aerosol optical depth and volume radius distribution. With experimental data and numerical simulations a procedure is shown that enables one to carry out the two calibrations needed for the sky radiometer, to determine a best estimate of the input parameters, and, finally, to obtain the average features of the atmospheric aerosols. An interesting finding is that inversion of only data of diffuse irradiance yields the same accuracy of result as data of both diffuse and direct irradiance; in this case, only calibration of the solid viewing angle of the sky radiometer is needed, thus shortening the elaboration procedure. Measurements were carried out in the Western Mediterranean Sea (Italy), in Tokyo (Japan), and in Ushuaia (Tierra del Fuego, Argentina); data were elaborated with a new software package, the Skyrad code, based on an efficient radiative transfer scheme.

2.
Appl Opt ; 31(36): 7633-46, 1992 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-20802644

RESUMO

The assumption of blackbody emission (emissivity, 1.0) for a calm ocean surface can lead to significant underestimates of the sea-surface temperature (SST) derived from IR radiometric data. Taking the optical properties of the atmosphere as known, we calculate the errors stemming from the blackbody assumption for cases of a purely absorbing or a purely scattering atmosphere. It is observed that for an absorbing atmosphere the errors in SST are always reduced and are the same whether measurements are made from space or at any level in the atmosphere. As for atmospheric scattering, the SST errors are slightly reduced when one is viewing from large zenith angles but are slightly enhanced when one is viewing from the zenith. The inferred optical thickness tau of an absorbing layer can be in error under the blackbody assumption by a Deltatau of 0.01-0.08, while the inferred optical thickness of a scattering layer can be in error by a larger amount, Deltatau of 0.03-0.13. The error Deltatau depends only weakly on the actual optical thickness and on the viewing angle, but it is rather sensitive to the wavelength of the measurement. In the absence of steep slopes in the wave-slope distribution, directional emissivities are essentially unchanged by sea state when one is viewing from or near the zenith. When one is viewing from moderately large zenith angles (such as 507 degrees ), however, the departures in the directional emissivities from blackbody emission can be much larger under perturbed sea state than under calm conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...