Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6603): 285-291, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857591

RESUMO

Carbonaceous asteroids, such as (101955) Bennu, preserve material from the early Solar System, including volatile compounds and organic molecules. We report spacecraft imaging and spectral data collected during and after retrieval of a sample from Bennu's surface. The sampling event mobilized rocks and dust into a debris plume, excavating a 9-meter-long elliptical crater. This exposed material is darker, spectrally redder, and more abundant in fine particulates than the original surface. The bulk density of the displaced subsurface material was 500 to 700 kilograms per cubic meter, which is about half that of the whole asteroid. Particulates that landed on instrument optics spectrally resemble aqueously altered carbonaceous meteorites. The spacecraft stored 250 ± 101 grams of material, which will be delivered to Earth in 2023.

2.
Nature ; 587(7833): 205-209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106686

RESUMO

An asteroid's history is determined in large part by its strength against collisions with other objects1,2 (impact strength). Laboratory experiments on centimetre-scale meteorites3 have been extrapolated and buttressed with numerical simulations to derive the impact strength at the asteroid scale4,5. In situ evidence of impacts on boulders on airless planetary bodies has come from Apollo lunar samples6 and images of the asteroid (25143) Itokawa7. It has not yet been possible, however, to assess directly the impact strength, and thus the absolute surface age, of the boulders that constitute the building blocks of a rubble-pile asteroid. Here we report an analysis of the size and depth of craters observed on boulders on the asteroid (101955) Bennu. We show that the impact strength of metre-sized boulders is 0.44 to 1.7 megapascals, which is low compared to that of solid terrestrial materials. We infer that Bennu's metre-sized boulders record its history of impact by millimetre- to centimetre-scale objects in near-Earth space. We conclude that this population of near-Earth impactors has a size frequency distribution similar to that of metre-scale bolides and originates from the asteroidal population. Our results indicate that Bennu has been dynamically decoupled from the main asteroid belt for 1.75 ± 0.75 million years.

3.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33033037

RESUMO

Thermal inertia and surface roughness are proxies for the physical characteristics of planetary surfaces. Global maps of these two properties distinguish the boulder population on near-Earth asteroid (NEA) (101955) Bennu into two types that differ in strength, and both have lower thermal inertia than expected for boulders and meteorites. Neither has strongly temperature-dependent thermal properties. The weaker boulder type probably would not survive atmospheric entry and thus may not be represented in the meteorite collection. The maps also show a high-thermal inertia band at Bennu's equator, which might be explained by processes such as compaction or strength sorting during mass movement, but these explanations are not wholly consistent with other data. Our findings imply that other C-complex NEAs likely have boulders similar to those on Bennu rather than finer-particulate regoliths. A tentative correlation between albedo and thermal inertia of C-complex NEAs may be due to relative abundances of boulder types.

4.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33033036

RESUMO

The gravity field of a small body provides insight into its internal mass distribution. We used two approaches to measure the gravity field of the rubble-pile asteroid (101955) Bennu: (i) tracking and modeling the spacecraft in orbit about the asteroid and (ii) tracking and modeling pebble-sized particles naturally ejected from Bennu's surface into sustained orbits. These approaches yield statistically consistent results up to degree and order 3, with the particle-based field being statistically significant up to degree and order 9. Comparisons with a constant-density shape model show that Bennu has a heterogeneous mass distribution. These deviations can be modeled with lower densities at Bennu's equatorial bulge and center. The lower-density equator is consistent with recent migration and redistribution of material. The lower-density center is consistent with a past period of rapid rotation, either from a previous Yarkovsky-O'Keefe-Radzievskii-Paddack cycle or arising during Bennu's accretion following the disruption of its parent body.

5.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33033038

RESUMO

We investigate the shape of near-Earth asteroid (101955) Bennu by constructing a high-resolution (20 cm) global digital terrain model from laser altimeter data. By modeling the northern and southern hemispheres separately, we find that longitudinal ridges previously identified in the north extend into the south but are obscured there by surface material. In the south, more numerous large boulders effectively retain surface materials and imply a higher average strength at depth to support them. The north has fewer large boulders and more evidence of boulder dynamics (toppling and downslope movement) and surface flow. These factors result in Bennu's southern hemisphere being rounder and smoother, whereas its northern hemisphere has higher slopes and a less regular shape. We infer an originally asymmetric distribution of large boulders followed by a partial disruption, leading to wedge formation in Bennu's history.

6.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33033155

RESUMO

The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. We present spectra of the Nightingale crater region on near-Earth asteroid Bennu with a distinct infrared absorption around 3.4 micrometers. Corresponding images of boulders show centimeters-thick, roughly meter-long bright veins. We interpret the veins as being composed of carbonates, similar to those found in aqueously altered carbonaceous chondrite meteorites. If the veins on Bennu are carbonates, fluid flow and hydrothermal deposition on Bennu's parent body would have occurred on kilometer scales for thousands to millions of years. This suggests large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early Solar System.

7.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33033157

RESUMO

Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.89 micrometers) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet region (i.e., become bluer at shorter wavelengths), then brighten in the visible to near-infrared region, leading to Bennu's moderately blue average color. Craters indicate that the time scale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.

8.
Science ; 366(6470)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806784

RESUMO

Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) spacecraft. For the three largest observed events, we estimated the ejected particle velocities and sizes, event times, source regions, and energies. We also determined the trajectories and photometric properties of several gravitationally bound particles that orbited temporarily in the Bennu environment. We consider multiple hypotheses for the mechanisms that lead to particle ejection for the largest events, including rotational disruption, electrostatic lofting, ice sublimation, phyllosilicate dehydration, meteoroid impacts, thermal stress fracturing, and secondary impacts.

9.
Nat Geosci ; 12(4): 247-252, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31080497

RESUMO

The shapes of asteroids reflect interplay between their interior properties and the processes responsible for their formation and evolution as they journey through the Solar System. Prior to the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, Earth-based radar imaging gave an overview of (101955) Bennu's shape. Here, we construct a high-resolution shape model from OSIRIS-REx images. We find that Bennu's top-like shape, considerable macroporosity, and prominent surface boulders suggest that it is a rubble pile. High-standing, north-south ridges that extend from pole to pole, many long grooves, and surface mass wasting indicate some low levels of internal friction and/or cohesion. Our shape model indicates that, similar to other top-shaped asteroids, Bennu formed by reaccumulation and underwent past periods of fast spin leading to its current shape. Today, Bennu might follow a different evolutionary pathway, with interior stiffness permitting surface cracking and mass wasting.

10.
Nat Astron ; 3(4): 352-361, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32601603

RESUMO

The top-shape morphology of asteroid (101955) Bennu is commonly found among fast-spinning asteroids and binary asteroid primaries, and might have contributed significantly to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of OSIRIS-REx, we find a significant transition in Bennu's surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu's surface has been most recently migrating towards its equator (given Bennu's increasing spin rate), we infer that Bennu's surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior has a distribution of voids and boulders. The presence of such heterogeneity and Bennu's top-shape is consistent with spin-induced failure at some point in its past, although the manner of its failure cannot be determined yet. Future measurements by the OSIRIS-REx spacecraft will give additional insights and may resolve questions regarding the formation and evolution of Bennu's top-shape morphology and its link to the formation of binary asteroids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...