Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37297490

RESUMO

The hamburger has been targeted for substitution by numerous plant-based alternatives. However, many consumers find the taste of these alternatives lacking, and thus we proposed a hybrid meat and plant-based burger as a more acceptable alternative for these consumers. The burger was made from 50% meat (beef and pork, 4:1) and 50% plant-based ingredients, including texturised legume protein. Texture and sensory properties were evaluated instrumentally and through a consumer survey (n = 381) using the check-all-that-apply (CATA) method. Expressible moisture measurements indicated a significantly juicier eating experience for the hybrid compared to a beef burger (33.5% vs. 22.3%), which was supported by the CATA survey where "juicy" was used more to describe the hybrid than the beef burger (53% vs. 12%). Texture profile analysis showed the hybrid burger was significantly softer (Young's modulus: 332 ± 34 vs. 679 ± 80 kPa) and less cohesive than a beef burger (Ratio 0.48 ± 0.02 vs. 0.58 ± 0.01). Despite having different textural and CATA profiles, overall liking of the hybrid burger and a beef burger were not significantly different. Penalty analysis indicated that "meat flavour", "juiciness", "spiciness" and "saltiness" were the most important attributes for a burger. In conclusion, the hybrid burger had different attributes and was described with different CATA terms than a beef burger but had the same overall acceptability.

2.
Proc Natl Acad Sci U S A ; 116(28): 14339-14348, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239345

RESUMO

The establishment of nitrogen-fixing root nodules in legume-rhizobia symbiosis requires an intricate communication between the host plant and its symbiont. We are, however, limited in our understanding of the symbiosis signaling process. In particular, how membrane-localized receptors of legumes activate signal transduction following perception of rhizobial signaling molecules has mostly remained elusive. To address this, we performed a coimmunoprecipitation-based proteomics screen to identify proteins associated with Nod factor receptor 5 (NFR5) in Lotus japonicus. Out of 51 NFR5-associated proteins, we focused on a receptor-like cytoplasmic kinase (RLCK), which we named NFR5-interacting cytoplasmic kinase 4 (NiCK4). NiCK4 associates with heterologously expressed NFR5 in Nicotiana benthamiana, and directly binds and phosphorylates the cytoplasmic domains of NFR5 and NFR1 in vitro. At the cellular level, Nick4 is coexpressed with Nfr5 in root hairs and nodule cells, and the NiCK4 protein relocates to the nucleus in an NFR5/NFR1-dependent manner upon Nod factor treatment. Phenotyping of retrotransposon insertion mutants revealed that NiCK4 promotes nodule organogenesis. Together, these results suggest that the identified RLCK, NiCK4, acts as a component of the Nod factor signaling pathway downstream of NFR5.


Assuntos
Lipopolissacarídeos/genética , Lotus/genética , Nodulação/genética , Simbiose/genética , Citoplasma/enzimologia , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Fosfotransferases/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia
3.
Plant J ; 91(3): 394-407, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28407380

RESUMO

Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N-glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N-glycan patterns as documented using mass spectrometry and glycan-recognising antibodies, indicating successful identification of null mutations in the target glyco-genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3-fucosyltransferase (Lj3fuct) mutant completely lacked α1,3-core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N-glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N-acetylglucosaminyltransferase I, and α1,3-fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N-glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N-glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian-like N-glycosylation features.


Assuntos
Glicoproteínas/isolamento & purificação , Lotus/genética , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas/genética , Glicosilação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Plantas/genética
4.
Mol Immunol ; 72: 49-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26943931

RESUMO

TH2-biased immunity to parasites and allergens is often associated with increased levels of antigen-specific and high affinity IgE. The role in reacting against minute amounts of target structures and to provoke severe anaphylactic reactions renders IgE a mechanistically outstanding isotype. IgE represents the least abundant serum antibody isotype and exhibits a variety of peculiarities including structure, extensive glycosylation and effector functions. Despite large progress in antibody technologies, however, the recombinant access to isotypes beyond IgG such as IgE still is scarce. The capacity of expression systems has to meet the complex structural conformations and the extensive posttranslational modifications that are indispensable for biological activity. In order to provide alternatives to mammalian expression systems with often low yield and a more complex glycosylation pattern we established the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the rIgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the IgE isotype.


Assuntos
Clonagem Molecular/métodos , Imunoglobulina E/biossíntese , Animais , Anticorpos Antineoplásicos/biossíntese , Anticorpos Antineoplásicos/genética , Anticorpos Antineoplásicos/imunologia , Humanos , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Imunoglobulina E/isolamento & purificação , Polissacarídeos/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera , Ressonância de Plasmônio de Superfície
5.
Proteomics ; 14(2-3): 230-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24293220

RESUMO

Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.


Assuntos
Lotus/fisiologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Nódulos Radiculares de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Lotus/química , Lotus/genética , Lotus/microbiologia , Mutação , Fixação de Nitrogênio , Proteínas de Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Proteoma/análise , Proteoma/genética , Proteoma/metabolismo , Proteômica , Nódulos Radiculares de Plantas/química , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Simbiose
6.
Plant Cell ; 25(11): 4616-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285797

RESUMO

Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Autofagia/fisiologia , Catalase/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catalase/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Hidroxiureia/farmacologia , Mutação , Estresse Oxidativo
7.
J Proteome Res ; 12(7): 3383-92, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23799247

RESUMO

Legume food allergy, such as allergy toward peanuts and soybeans, is a health issue predicted to worsen as dietary advice recommends higher intake of legume-based foods. Lotus japonicus (Lotus) is an established legume plant model system for studies of symbiotic and pathogenic microbial interactions and, due to its well characterized genotype/phenotype and easily manipulated genome, may also be suitable for studies of legume food allergy. Here we present a comprehensive study of the Lotus N-glycoproteome. The global and site-specific N-glycan structures of Lotus seed globulins were analyzed using mass spectrometry-based glycomics and glycoproteomics techniques. In total, 19 N-glycan structures comprising high mannose (∼20%), pauci-mannosidic (∼40%), and complex forms (∼40%) were determined. The pauci-mannosidic and complex N-glycans contained high amounts of the typical plant determinants ß-1,2-xylose and α-1,3-fucose. Two abundant Lotus seed N-glycoproteins were site-specifically profiled; a predicted lectin containing two fully occupied N-glycosylation sites carried predominantly pauci-mannosidic structures in different distributions. In contrast, Lotus convicilin storage protein 2 (LCP2) carried exclusively high mannose N-glycans similar to its homologue, Ara h 1, which is the major allergen in peanut. In silico investigation confirmed that peanut Ara h 1 and Lotus LCP2 are highly similar at the primary and higher protein structure levels. Hence, we suggest that Lotus has the potential to serve as a model system for studying the role of seed proteins and their glycosylation in food allergy.


Assuntos
Globulinas/genética , Glicoproteínas/isolamento & purificação , Lotus/metabolismo , Proteínas de Plantas/isolamento & purificação , Sequência Conservada , Globulinas/classificação , Globulinas/isolamento & purificação , Glicoproteínas/metabolismo , Glicosilação , Lotus/genética , Espectrometria de Massas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo
8.
Plant Cell Physiol ; 54(1): 107-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161854

RESUMO

The physiological role of K(+)-dependent and K(+)-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K(+)-dependent NSE1 asparaginase in the model legume Lotus japonicus. For this purpose, four different mutants were identified by TILLING and characterized, two of which affected the structure and function of the asparaginase molecule and caused asparagine accumulation. Plant growth and total seed weight of mature mutant seeds as well as the level of both legumin and convicilin seed storage proteins were affected in the mutants. The mutants isolated in the present work are the first of their type in legumes and have enabled us to demonstrate the importance of asparagine and K(+)-dependent NSE1 asparaginase for nitrogen remobilization and seed production in L. japonicus plants.


Assuntos
Asparaginase/metabolismo , Lotus/enzimologia , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Mutação , Nitrogênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
9.
J Proteome Res ; 9(11): 5715-26, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20831161

RESUMO

Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965 seed proteins, including 263 proteins distinguishing the pod. The complete data set is publicly available at http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi , where spots in a reference map are linked to experimental data, such as matched peptides, quantification values, and gene accessions. Identified pod proteins represented enzymes from 85 different metabolic pathways, including storage globulins and a late embryogenesis abundant protein. In contrast to seed maturation, pod maturation was associated with decreasing total protein content, especially proteins involved in protein biosynthesis and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate metabolism pathway were identified.


Assuntos
Frutas/química , Lotus/química , Proteínas de Plantas/análise , Proteoma/análise , Sementes/química , Fabaceae , Frutas/crescimento & desenvolvimento , Lotus/crescimento & desenvolvimento , Redes e Vias Metabólicas , Sementes/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
10.
Plant Physiol ; 149(3): 1325-40, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19129418

RESUMO

We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family.


Assuntos
Lotus/embriologia , Lotus/metabolismo , Modelos Biológicos , Proteoma/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Biomassa , Cromatografia Líquida , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Ácidos Graxos/análise , Globulinas/genética , Globulinas/metabolismo , Internet , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/citologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amido/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...