Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2309306120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988471

RESUMO

RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.


Assuntos
Trypanosoma brucei brucei , Estruturas R-Loop , Variação Antigênica/genética , Quebras de DNA , DNA , RNA , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
2.
Exp Parasitol ; 255: 108639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918502

RESUMO

The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.


Assuntos
Proteínas de Ciclo Celular , Leishmania major , Proteínas de Ciclo Celular/genética , Leishmania major/metabolismo , Ciclo Celular , Dano ao DNA
4.
Exp Parasitol, v. 255, 108639, dez. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5158

RESUMO

The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.

5.
Trends Genet ; 37(1): 21-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32993968

RESUMO

The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome's content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read-write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read-write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/genética , Genoma de Protozoário , Kinetoplastida/genética , Leishmania/genética , Trypanosoma brucei brucei/genética , Animais
6.
PLoS Genet ; 16(7): e1008828, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609721

RESUMO

Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.


Assuntos
Recombinação Homóloga/genética , Leishmania major/genética , Leishmaniose Cutânea/genética , Rad51 Recombinase/genética , Sistemas CRISPR-Cas/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Técnicas de Inativação de Genes , Genoma/genética , Humanos , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia
7.
Methods Mol Biol ; 1971: 225-235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980306

RESUMO

Induction of gene expression is a valuable approach for functional studies since it allows for the assessment of phenotypes without the need for clonal selection. Inducible expression can find a wide range of applications, from the study of essential genes to the characterization of overexpression of genes of interest. Here, we describe a detailed protocol for the use of the DiCre-based inducible gene expression system in Leishmania parasites. This is a tightly regulated induction system that allows for time- and dose-controlled expression of gene products, as rapidly as within 12 h.


Assuntos
Deleção de Genes , Genes de Protozoários , Integrases , Leishmania/genética , Recombinação Genética
8.
Nucleic Acids Res ; 46(22): 11835-11846, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30380080

RESUMO

Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome-wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryotes.


Assuntos
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Endonucleases/genética , Genoma de Protozoário , Leishmania major/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional/métodos , Meios de Cultura/química , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Deleção de Genes , Regulação da Expressão Gênica , Engenharia Genética , Variação Genética , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Leishmania major/metabolismo , Sequenciamento Completo do Genoma
9.
EBioMedicine ; 36: 83-91, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30268832

RESUMO

BACKGROUND: Miltefosine has been used successfully to treat visceral leishmaniasis (VL) in India, but it was unsuccessful for VL in a clinical trial in Brazil. METHODS: To identify molecular markers that predict VL treatment failure whole genome sequencing of 26 L. infantum isolates, from cured and relapsed patients allowed a GWAS analysis of SNPs, gene and chromosome copy number variations. FINDINGS: A strong association was identified (p = 0·0005) between the presence of a genetically stable L. infantumMiltefosine Sensitivity Locus (MSL), and a positive response to miltefosine treatment. The risk of treatment failure increased 9·4-fold (95% CI 2·11-53·54) when an isolate did not have the MSL. The complete absence of the MSL predicted miltefosine failure with 0·92 (95% CI 0·65-0·996) sensitivity and 0·78 (95% CI 0·52-0·92) specificity. A genotyping survey of L. infantum (n = 157) showed that the frequency of MSL varies in a cline from 95% in North East Brazil to <5% in the South East. The MSL was found in the genomes of all L. infantum and L. donovani sequenced isolates from the Old World (n = 671), where miltefosine can have a cure rate higher than 93%. INTERPRETATION: Knowledge on the presence or absence of the MSL in L. infantum will allow stratification of patients prior to treatment, helping to establish better therapeutic strategies for VL treatment. FUND: CNPq, FAPES, GCRF MRC and Wellcome Trust.


Assuntos
Antiprotozoários/uso terapêutico , Marcadores Genéticos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Fosforilcolina/análogos & derivados , Antiprotozoários/farmacologia , Brasil , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Genoma de Protozoário , Genômica/métodos , Geografia , Humanos , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Locos de Características Quantitativas , Falha de Tratamento , Resultado do Tratamento
10.
Mem Inst Oswaldo Cruz ; 112(8): 572-576, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28767983

RESUMO

The Telomeric Repeat-containing RNAs (TERRA) participate in the homeostasis of telomeres in higher eukaryotes. Here, we investigated the expression of TERRA in Leishmania spp. and Trypanosoma brucei and found evidences for its expression as a specific RNA class. The trypanosomatid TERRA are heterogeneous in size and partially polyadenylated. The levels of TERRA transcripts appear to be modulated through the life cycle in both trypanosomatids investigated, suggesting that TERRA play a stage-specific role in the life cycle of these early-branching eukaryotes.


Assuntos
Leishmania/genética , RNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Telomerase/genética , Trypanosoma brucei brucei/genética
11.
Trends Parasitol ; 33(11): 858-874, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844718

RESUMO

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.


Assuntos
Replicação do DNA/fisiologia , Trypanosoma/genética , Animais , Sistemas de Liberação de Medicamentos , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Pesquisa/tendências
12.
Mol Biochem Parasitol ; 216: 45-48, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28629935

RESUMO

Here we present the establishment of an inducible system based on the dimerizable Cre recombinase (DiCre) for controlled gene expression in the protozoan parasite Leishmania. Rapamycin-induced DiCre activation promoted efficient flipping and expression of gene products in a time and dose-dependent manner. The DiCre flipping activity induced the expression of target genes from both integrated and episomal contexts broadening the applicability of the system. We validated the system by inducing the expression of both full length and truncated forms of the checkpoint protein Rad9, which revealed that the highly divergent C-terminal domain of Rad9 is necessary for proper subcellular localization. Thus, by establishing the DiCre-based inducible system we have created and validated a robust new tool for assessing gene function in Leishmania.


Assuntos
Regulação da Expressão Gênica , Engenharia Genética , Recombinação Homóloga , Integrases/metabolismo , Leishmania major/genética , Leishmania major/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ordem dos Genes , Vetores Genéticos/genética
13.
Trends Parasitol. ; 33(11): 858-874, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17811

RESUMO

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.

14.
Mol Microbiol ; 101(6): 1054-68, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301589

RESUMO

The Rad9-Rad1-Hus1 (9-1-1) complex is a key component in the coordination of DNA damage sensing, cell cycle progression and DNA repair pathways in eukaryotic cells. This PCNA-related trimer is loaded onto RPA-coated single stranded DNA and interacts with ATR kinase to mediate effective checkpoint signaling to halt the cell cycle and to promote DNA repair. Beyond these core activities, mounting evidence suggests that a broader range of functions can be provided by 9-1-1 structural diversification. The protozoan parasite Leishmania is an early-branching eukaryote with a remarkably plastic genome, which hints at peculiar genome maintenance mechanisms. Here, we investigated the existence of homologs of the 9-1-1 complex subunits in L. major and found that LmRad9 and LmRad1 associate with chromatin in response to replication stress and form a complex in vivo with LmHus1. Similar to LmHus1, LmRad9 participates in telomere homeostasis and in the response to both replication stress and double strand breaks. However, LmRad9 and LmHus1-deficient cells present markedly opposite phenotypes, which suggest their functional compartmentalization. We show that some of the cellular pool of LmRad9 forms an alternative complex and that some of LmHus1 exists as a monomer. We propose that the diverse assembly of the Leishmania 9-1-1 subunits mediates functional compartmentalization, which has a direct impact on the response to genotoxic stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Exonucleases/metabolismo , Leishmania major/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Leishmania major/genética , Leishmania major/metabolismo
15.
Nucleic Acids Res ; 44(10): 4763-84, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26951375

RESUMO

Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.


Assuntos
Replicação do DNA , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Ciclo Celular , Núcleo Celular/genética , Complexo de Reconhecimento de Origem/fisiologia , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/metabolismo
16.
Methods Mol Biol ; 1201: 235-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388118

RESUMO

The ability of transposable elements to mobilize across genomes and affect the expression of genes makes them exceptional tools for genetic manipulation methodologies. Several transposon-based systems have been modified and incorporated into shuttle mutagenesis approaches in a variety of organisms. We have found that the Mos1 element, a DNA transposon from Drosophila mauritiana, is suitable and readily adaptable to a variety of strategies to the study of trypanosomatid parasitic protozoa. Trypanosomatids are the causative agents of a wide range of neglected diseases in underdeveloped regions of the globe. In this chapter we describe the basic elements and the available protocols for the in vitro use of Mos1 derivatives in the protozoan parasite Leishmania.


Assuntos
Drosophila/genética , Técnicas Genéticas , Leishmania/genética , Mutagênese/genética , Animais , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Leishmania/parasitologia , Transposases/genética , Transposases/isolamento & purificação
17.
Mol Microbiol ; 90(5): 1074-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118609

RESUMO

Genotoxic stress activates checkpoint-signalling pathways leading to cell cycle arrest and DNA repair. In many eukaryotes, the Rad9-Hus1-Rad1 (9-1-1) checkpoint complex participates in the early steps of the DNA damage response to replicative stress and is a pivotal contributor to genome homeostasis. The remarkable genome plasticity of the protozoan Leishmania hints at a peculiar DNA metabolism in these ancient eukaryotes. Therefore, we set out to investigate the existence of homologues of the 9-1-1 components in Leishmania major and found that LmHus1 and LmRad9 are phylogenetically related to the 9-1-1 complex subunits from other eukaryotes. Altered levels of LmHus1 and LmRad9 affected the parasite ability to manage genotoxic stress and LmHus1-defficent cells were defective in controlling cell cycle progression in response to genotoxic stress. Upon DNA damage, LmHus1 was recruited to the chromatin and colocalized with the single-stranded DNA-binding protein LmRpa1. Also, LmHus1 interacted with LmRad9 to form a DNA damage responsive complex in vivo. Altogether, our data strongly indicate the participation of LmHus1, LmRad9 and LmRpa1 in the L. major DNA damage response and suggest their involvement in genome maintenance mechanisms.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Genes de Protozoários , Leishmania major/genética , Leishmania major/metabolismo , Proteínas de Protozoários/metabolismo , Ciclo Celular , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química
18.
Mol Biochem Parasitol ; 177(1): 65-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21291918

RESUMO

The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression.


Assuntos
Dano ao DNA , Leishmania major/genética , Leishmania major/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Humanos , Leishmania major/química , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Dados de Sequência Molecular , Mutagênicos/toxicidade , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência
19.
Genetica ; 138(3): 301-11, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19763844

RESUMO

Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.


Assuntos
Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Leishmania/fisiologia , Mutagênese , Animais , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Genoma de Protozoário , Humanos , Plasmodium/fisiologia , Infecções por Protozoários/parasitologia , Transposases/fisiologia , Trypanosoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...