Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Sci Rep ; 14(1): 7444, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548832

RESUMO

Urinary incontinence is a common complication following radical prostatectomy, as the surgery disturbs critical anatomical structures. This study explored how pudendal nerve (PN) injury affects urinary continence in male rats. In an acute study, leak point pressure (LPP) and external urethral sphincter electromyography (EMG) were performed on six male rats with an intact urethra, the urethra exposed (UE), the PN exposed (NE), and after PN transection (PNT). In a chronic study, LPP and EMG were tested in 67 rats 4 days, 3 weeks, or 6 weeks after sham PN injury, PN crush (PNC), or PNT. Urethras were assessed histologically. Acute PNT caused a significant decrease in LPP and EMG amplitude and firing rate compared to other groups. PNC resulted in a significant reduction in LPP and EMG firing rate 4 days, 3 weeks, and 6 weeks later. EMG amplitude was also significantly reduced 4 days and 6 weeks after PNC. Neuromuscular junctions were less organized and less innervated after PNC or PNT at all timepoints compared to sham injured animals. Collagen infiltration was significantly increased after PNC and PNT compared to sham at all timepoints. This rat model could facilitate preclinical testing of neuroregenerative therapies for post-prostatectomy incontinence.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Pudendo , Incontinência Urinária por Estresse , Incontinência Urinária , Masculino , Ratos , Animais , Incontinência Urinária por Estresse/etiologia , Incontinência Urinária por Estresse/patologia , Ratos Sprague-Dawley , Nervo Pudendo/patologia , Modelos Animais de Doenças , Traumatismos dos Nervos Periféricos/complicações , Incontinência Urinária/complicações
2.
IEEE Sens J ; 24(6): 7308-7316, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38500510

RESUMO

Continuous monitoring of bladder activity during normal daily activities would improve clinical diagnostics and understanding of the mechanisms underlying bladder function, or help validate how differing neuromodulation strategies affect the bladder. This work describes a urological monitor of conscious activity (UroMOCA). The UroMOCA included a pressure sensor, urine impedance-sensing electrodes, and wireless battery recharge and data transmission circuitry. Components were assembled on a circuit board and encapsulated with an epoxy/silicone molded package that allowed Pt-Ir electrode feedthrough for urine contact. Packaged UroMOCAs measured 12 × 18 × 6 mm. UroMOCAs continuously transmitted data from all onboard sensors at 10 Hz at 30 cm range, and ran for up to 44 hours between wireless recharges. After in vitro calibration, implantations were performed in 11 animals. Animals carried the device for 28 days, enabling many observations of bladder behavior during natural, conscious behavior. In vivo testing confirmed the UroMOCA did not impact bladder function after a two-week healing period. Pressure data in vivo were highly correlated to a reference catheter used during an anesthetized follow-up. Static volume sensor data were less accurate, but demonstrated reliable detection of bladder volume decreases, and distinguished between voiding and non-voiding bladder events.

3.
Neurourol Urodyn ; 43(6): 1303-1310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38149773

RESUMO

INTRODUCTION: A session at the 2023 International Consultation on Incontinence - Research Society (ICI-RS) held in Bristol, UK, focused on the question: Is the time right for a new initiative in mathematical modeling of the lower urinary tract (LUT)? The LUT is a complex system, comprising various synergetic components (i.e., bladder, urethra, neural control), each with its own dynamic functioning and high interindividual variability. This has led to a variety of different types of models for different purposes, each with advantages and disadvantages. METHODS: When addressing the LUT, the modeling approach should be selected and sized according to the specific purpose, the targeted level of detail, and the available computational resources. Four areas were selected as examples to discuss: utility of nomograms in clinical use, value of fluid mechanical modeling, applications of models to simplify urodynamics, and utility of statistical models. RESULTS: A brief literature review is provided along with discussion of the merits of different types of models for different applications. Remaining research questions are provided. CONCLUSIONS: Inadequacies in current (outdated) models of the LUT as well as recent advances in computing power (e.g., quantum computing) and methods (e.g., artificial intelligence/machine learning), would dictate that the answer is an emphatic "Yes, the time is right for a new initiative in mathematical modeling of the LUT."


Assuntos
Urodinâmica , Humanos , Sintomas do Trato Urinário Inferior/fisiopatologia , Sintomas do Trato Urinário Inferior/diagnóstico , Modelos Biológicos , Nomogramas , Uretra/fisiologia , Modelos Teóricos , Bexiga Urinária/fisiologia , Bexiga Urinária/fisiopatologia
4.
Neurourol Urodyn ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048061

RESUMO

AIMS: Lower urinary tract dysfunctions (LUTD) are very common and, importantly, affect patients' quality of life (QoL). LUTD can range from urinary retention to urgency incontinence and includes a variety of symptoms. Nerve stimulation (NS) is an accepted widespread treatment with documented success for LUTD and is used widely. The aim of this review is to report the results of the discussion about how to improve the outcomes of NS for LUTD treatment. METHODS: During its 2023 meeting in Bristol, the International Consultation on Incontinence Research Society discussed a literature review, and there was an expert consensus discussion focused on the emerging awareness of NS suitable for LUTD. RESULTS: The consensus discussed how to improve techniques and patients' selection in NS, and high-priority research questions were identified. CONCLUSIONS: Technique improvement, device programming, and patient selection are the goals of the current approach to NS. The conditional nerve stimulation with minimally invasive wireless systems and tailored algorithms hold promise for improving NS for LUTD, particularly for patients with neurogenic bladder who represent the new extended population to be treated.

5.
Neurourol Urodyn ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921238

RESUMO

INTRODUCTION: A "Think Tank" at the International Consultation on Incontinence-Research Society meeting held in Bristol, United Kingdom in June 2023 considered the progress and promise of machine learning (ML) applied to urodynamic data. METHODS: Examples of the use of ML applied to data from uroflowmetry, pressure flow studies and imaging were presented. The advantages and limitations of ML were considered. Recommendations made during the subsequent debate for research studies were recorded. RESULTS: ML analysis holds great promise for the kind of data generated in urodynamic studies. To date, ML techniques have not yet achieved sufficient accuracy for routine diagnostic application. Potential approaches that can improve the use of ML were agreed and research questions were proposed. CONCLUSIONS: ML is well suited to the analysis of urodynamic data, but results to date have not achieved clinical utility. It is considered likely that further research can improve the analysis of the large, multifactorial data sets generated by urodynamic clinics, and improve to some extent data pattern recognition that is currently subject to observer error and artefactual noise.

6.
Biomedicines ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371634

RESUMO

Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.

7.
IEEE Trans Biomed Circuits Syst ; 17(5): 941-951, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363840

RESUMO

Monitoring of colon activity is currently limited to tethered systems like anorectal manometry. These systems have significant drawbacks, but fundamentally limit the observation time of colon activity, reducing the likelihood of detecting specific clinical events. While significant technological advancement has been directed to mobile sensor capsules, this work describes the development and feasibility of a stationary sensor for describing the coordinated activity between neighboring segments of the colon. Unlike wireless capsules, this device remains in position and measures propagating pressure waves and impedances between colon segments to describe activity and motility. This low-power, flexible, wireless sensor-the colon monitor to capture activity (ColoMOCA) was validated in situ and in vivo over seven days of implantation. The ColoMOCA diameter was similar to common endoscopes to allow for minimally invasive diagnostic placement. The ColoMOCA included two pressure sensors, and three impedance-sensing electrodes arranged to describe the differential pressures and motility between adjacent colon segments. To prevent damage after placement in the colon, the ColoMOCA was fabricated with a flexible polyimide circuit board and a silicone rubber housing. The resulting device was highly flexible and suitable for surgical attachment to the colon wall. In vivo testing performed in eleven animals demonstrated suitability of both short term (less than 3 hours) and 7-day implantations. Data collected wirelessly from animal experiments demonstrated the ColoMOCA described colon activity similarly to wired catheters and allowed untethered, conscious monitoring of organ behavior.


Assuntos
Colo , Próteses e Implantes , Animais , Eletrodos , Impedância Elétrica , Catéteres
9.
J Urol ; 210(1): 186-195, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293725

RESUMO

PURPOSE: Urodynamics is the standard method of diagnosing bladder dysfunction, but involves catheters and retrograde bladder filling. With these artificial conditions, urodynamics cannot always reproduce patient complaints. We have developed a wireless, catheter-free intravesical pressure sensor, the UroMonitor, which enables catheter-free telemetric ambulatory bladder monitoring. The purpose of this study was twofold: to evaluate accuracy of UroMonitor pressure data, and assess safety and feasibility of use in humans. MATERIALS AND METHODS: Eleven adult female patients undergoing urodynamics for overactive bladder symptoms were enrolled. After baseline urodynamics, the UroMonitor was transurethrally inserted into the bladder and position was confirmed cystoscopically. A second urodynamics was then performed with the UroMonitor simultaneously transmitting bladder pressure. Following removal of urodynamics catheters, the UroMonitor transmitted bladder pressure during ambulation and voiding in private. Visual analogue pain scales (0-5) were used to assess patient discomfort. RESULTS: The UroMonitor did not significantly alter capacity, sensation, or flow during urodynamics. The UroMonitor was also easily inserted and removed in all subjects. The UroMonitor reproduced bladder pressure, capturing 98% (85/87) of voiding and nonvoiding urodynamic events. All subjects voided with only the UroMonitor in place with low post-void residual volume. Median ambulatory pain score with the UroMonitor was rated 0 (0-2). There were no post-procedural infections or changes to voiding behavior. CONCLUSIONS: The UroMonitor is the first device to enable catheter-free telemetric ambulatory bladder pressure monitoring in humans. The UroMonitor appears safe and well tolerated, does not impede lower urinary tract function, and can reliably identify bladder events compared to urodynamics.


Assuntos
Bexiga Urinária , Micção , Adulto , Humanos , Feminino , Cateteres Urinários/efeitos adversos , Urodinâmica , Sujeitos da Pesquisa
10.
Proc Inst Mech Eng H ; : 9544119231172272, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37132028

RESUMO

Individuals with spinal cord injury (SCI) usually develop neurogenic detrusor overactivity (NDO), resulting in bladder urgency and incontinence, and reduced quality of life. Electrical stimulation of the genital nerves (GNS) can inhibit uncontrolled bladder contractions in individuals with SCI. An automated closed-loop bladder neuromodulation system currently does not exist but could improve this approach. We have developed a custom algorithm to identify bladder contractions and trigger stimulation from bladder pressure data without need for abdominal pressure measurement. The goal of this pilot study was to test the feasibility of automated closed-loop GNS using our custom algorithm to identify and inhibit reflex bladder contractions in real time. Experiments were conducted in a single session in a urodynamics laboratory in four individuals with SCI and NDO. Each participant completed standard cystometrograms without and with GNS. Our custom algorithm monitored bladder vesical pressure and controlled when GNS was turned on and off. The custom algorithm detected bladder contractions in real time, successfully inhibiting a total of 56 contractions across all four subjects. There were eight false positives, six of those occurring in one subject. It took approximately 4.0 ± 2.6 s for the algorithm to detect the onset of a bladder contraction and trigger stimulation. The algorithm maintained stimulation for approximately 3.5 ± 1.7 s, which was enough to inhibit activity and relieve feelings of urgency. Automated closed-loop stimulation was well-tolerated and subjects reported that algorithm decisions generally matched with their perceptions of bladder activity. The custom algorithm automatically, successfully identified bladder contractions to trigger stimulation to inhibit bladder contractions acutely. Closed-loop neuromodulation using our custom algorithm is feasible, but further testing is needed refine this approach for use in a home environment.

11.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902428

RESUMO

In women, stress urinary incontinence (SUI), leakage of urine from increased abdominal pressure, is correlated with pudendal nerve (PN) injury during childbirth. Expression of brain-derived neurotrophic factor (BDNF) is dysregulated in a dual nerve and muscle injury model of childbirth. We aimed to use tyrosine kinase B (TrkB), the receptor of BDNF, to bind free BDNF and inhibit spontaneous regeneration in a rat model of SUI. We hypothesized that BDNF is essential for functional recovery from the dual nerve and muscle injuries that can lead to SUI. Female Sprague-Dawley rats underwent PN crush (PNC) and vaginal distension (VD) and were implanted with osmotic pumps containing saline (Injury) or TrkB (Injury + TrkB). Sham Injury rats received sham PNC + VD. Six weeks after injury, animals underwent leak-point-pressure (LPP) testing with simultaneous external urethral sphincter (EUS) electromyography recording. The urethra was dissected for histology and immunofluorescence. LPP after injury and TrkB was significantly decreased compared to Injury rats. TrkB treatment inhibited reinnervation of neuromuscular junctions in the EUS and promoted atrophy of the EUS. These results demonstrate that BDNF is essential to neuroregeneration and reinnervation of the EUS. Treatments aimed at increasing BDNF periurethrally could promote neuroregeneration to treat SUI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Traumatismos dos Nervos Periféricos , Incontinência Urinária por Estresse , Animais , Feminino , Gravidez , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Parto Obstétrico , Modelos Animais de Doenças , Músculos/metabolismo , Parto , Traumatismos dos Nervos Periféricos/patologia , Ratos Sprague-Dawley , Uretra/patologia , Incontinência Urinária por Estresse/metabolismo
12.
Int Urogynecol J ; 34(7): 1635-1644, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36662271

RESUMO

INTRODUCTION AND HYPOTHESIS: New treatments are needed for pelvic floor disorders. ReGeneraTing Agent® (RGTA®) is a promising regenerative therapy. Therefore, the objective of this study was to compare regenerative abilities of mesenchymal stem cells (MSCs) and RGTA® on regeneration after simulated childbirth injury in rats. METHODS: Rats underwent pudendal nerve crush and vaginal distension (PNC+VD) or sham injury. Rats that underwent PNC+VD were treated intravenously with vehicle, MSCs or RGTA® 1 h, 7 days, and 14 days after surgery. Sham rats received 1 ml vehicle at all time points. After 21 days, urethral function and pudendal nerve function were tested. Vaginal tissues were harvested for biomechanical testing and histology. Biaxial testing was performed to measure tissue stiffness. RESULTS: PNC+VD decreased urethral and pudendal nerve function compared with sham. Vaginal wall stiffness was significantly decreased in longitudinal and transverse tissue axes after PNC+VD compared with sham. MSC or RGTA® did not restore urethral or pudendal nerve function. However, MSC treatment resolved loss in vaginal wall stiffness in both tissue axes and improved collagen content within the vaginal wall. RGTA® treatment increased vaginal wall anisotropy by increasing relative stiffness in the longitudinal direction. PNC+VD (with vehicle or MSCs) enhanced elastogenesis, which was not observed after RGTA® treatment. CONCLUSIONS: Treatment with MSCs facilitated recovery of vaginal wall biomechanical properties and connective tissue composition after PNC+VD, whereas treatment with RGTA® resulted in anisotropic biomechanical changes. This indicates that MSCs and RGTA® promote different aspects of vaginal tissue regeneration after simulated childbirth injury.


Assuntos
Células-Tronco Mesenquimais , Incontinência Urinária por Estresse , Feminino , Ratos , Gravidez , Animais , Ratos Sprague-Dawley , Fenômenos Biomecânicos , Vagina , Modelos Animais de Doenças
13.
Tissue Eng Part A ; 29(3-4): 93-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36341592

RESUMO

Aim: The aim of this study is to investigate if a high dose of the stromal cell-derived factor-1 (SDF-1) plasmid improves outcome in a minipig model of chronic anal sphincter injury. Methods: Twenty-two female minipigs underwent excision of the posterior hemicircumference of the anal sphincter complex and were allowed to recover for 6 weeks. They were randomly allocated (n = 6) to receive either 5% dextrose (sham) or 2, 4, or 8 mg of SDF-1 plasmid at the defect site. Two control pigs received no surgery/treatment. Outcome measures included anal manometry at preinjury/pretreatment and 2, 4, and 8 weeks after treatment, recording the mean of eight pressure channels and the posterior channel alone, histopathology using Masson's trichrome, and immunohistochemistry using PGP9.5 for staining of neural structures, and CY3 staining for blood vessels. Data are expressed as mean ± standard error. Manometry analysis used two-way analysis of variance (ANOVA) followed by the Holm-Sidak test. Quantification of muscle/fibrosis was analyzed with a Kruskal-Wallis one-way ANOVA on ranks. Results: Posterior anal pressures were significantly decreased in sham treated animals compared with controls (p = 0.04). In contrast, mean anal pressures at the four time points were not significantly different between groups (p > 0.05). The defect area of the sham treated group showed irregular muscle bundles, while all three SDF-1 treatment groups show organized muscle bundles, with the most organization in the higher dose groups. Quantification of Masson-stained slides showed no statistically significant differences between groups, but did show increased muscle volume in the area of defect in the treatment groups compared with sham. PGP9.5 and CY3 staining showed increased fluorescence in the higher dose groups compared with sham treatment. Conclusion: A single higher dose of the plasmid encoding SDF-1 may increase muscle volume in the area of a chronic defect. Impact statement Fecal or bowel incontinence as a result of a torn anal sphincter complex remains undetected for many years. The resulting defect does not respond well to surgical repair. Regenerating the anal sphincter complex with functional muscle has been a long-term goal. Stem cells home to a site of a chronic injury and cause regeneration when a cell signaling mechanism is available. Stromal cell-derived factor-1 is one such cytokine that has been well researched by us and others to have this effect. It is easy to use clinically and has been used in other applications in humans and considered safe.


Assuntos
Canal Anal , Quimiocina CXCL12 , Ratos , Humanos , Animais , Feminino , Suínos , Canal Anal/patologia , Canal Anal/cirurgia , Ratos Sprague-Dawley , Porco Miniatura , Regeneração
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3718-3722, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085686

RESUMO

Urodynamics is the current gold-standard for diagnosing lower urinary tract dysfunction, but uses non-physiologically fast, retrograde cystometric filling to obtain a brief snapshot of bladder function. Ambulatory urodynamics allows physicians to evaluate bladder function during natural filling over longer periods of time, but artifacts generated from patient movement necessitate the use of an abdominal pressure sensor, which makes long-term monitoring and feedback for closed-loop treatment impractical. In this paper, we analyze the characteristics of single-channel bladder pressure signals from human and feline datasets, and present an algorithm designed to estimate detrusor pressure, which is useful for diagnosis and treatment. We utilize multiresolution analysis techniques to maximize the attenuation of probable abdominal pressure components in the vesical pressure signal. Results indicate a strong correlation, averaging 0.895 ± 0.121 (N = 40) and 0.812 ± 0.113 (N = 16) between the estimated detrusor pressure obtained by the proposed method and recorded urodynamic data from human and feline subjects, respectively. Clinical Relevance- This work establishes that signal pro-cessing techniques may be applied to vesical pressure alone to accurately reconstruct pressures generated independently by the detrusor muscle. This is relevant for emerging sensors that measure vesical pressure alone or for data analysis of bladder pressure in ambulatory subjects which contains significant abdominal pressure artifacts.


Assuntos
Bexiga Urinária , Urodinâmica , Algoritmos , Instituições de Assistência Ambulatorial , Animais , Artefatos , Gatos , Humanos
15.
Acta Biomater ; 152: 335-344, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055614

RESUMO

Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.


Assuntos
Prolapso de Órgão Pélvico , Fenômenos Biomecânicos , Colágeno/química , Tecido Conjuntivo , Feminino , Humanos , Prolapso de Órgão Pélvico/metabolismo , Vagina/metabolismo
16.
Nat Rev Urol ; 19(10): 581-596, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35974244

RESUMO

Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.


Assuntos
Diabetes Mellitus , Bexiga Urinária , Humanos , Estresse Oxidativo , Bexiga Urinária/metabolismo , Urotélio/metabolismo
17.
Front Cell Neurosci ; 16: 866094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663428

RESUMO

Traumatic neuromuscular injury to the pudendal nerve and urethra during childbirth does not regenerate well and contributes to stress urinary incontinence in women. Mesenchymal stem cells (MSCs) can improve neuroregeneration via their secretions, or secretome, which includes brain-derived neurotrophic factor (BDNF). In this study, we investigated whether BDNF is a key factor in the secretome of MSCs for the facilitation of functional recovery following a dual simulated childbirth injury. BDNF knockdown (KD) MSCs were created using an anti-BDNF shRNA lentivirus vector. A scrambled sequence was used as a transduction control (scrambled). Cells were cultured for 24 h before media was concentrated 50x to create concentrated conditioned media (CCM) containing MSC secretome. CCM of unmanipulated MSCs was screened for high BDNF expression (high BDNF CCM). Concentrated control media (CM) was created by concentrating media not conditioned by cells. Female Sprague-Dawley rats underwent bilateral pudendal nerve crush and vaginal distension (Injury) or sham injury. One hour and 1 week after injury, sham injured rats received CM, and injured rats received CM, high BDNF CCM, KD CCM, or scrambled CCM (300 µl intraperitoneally). Three weeks after injury, rats underwent leak point pressure (LPP) and pudendal nerve sensory branch potential (PNSBP) recordings. The urethra and pudendal nerve were harvested for anatomical assessment. ANOVA followed by the Student-Newman-Keuls test determined significant differences between groups (p < 0.05). BDNF KD CCM had significantly decreased BDNF concentration compared to scrambled CCM, while the concentration in high BDNF CCM was significantly increased. LPP was significantly decreased in CM and KD CCM treated animals compared to sham injury, but not with scrambled or high BDNF CCM. PNSBP firing rate showed a significant decrease with CM treatment compared to sham injury. Neuromuscular junctions in the urethral sphincter in KD CCM, scrambled CCM, and high BDNF CCM were healthier than CM treated rats. While anatomical and nerve function tests demonstrate regeneration of the pudendal nerve with any CCM treatment, LPP results suggest it takes longer to recover continence with reduced BDNF in CCM. BDNF in MSC CCM is an important factor for the acceleration of recovery from a dual nerve and muscle injury.

20.
Int Urogynecol J ; 33(7): 1765-1788, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088092

RESUMO

INTRODUCTION AND HYPOTHESIS: Mouse knockout (KO) models of pelvic organ prolapse (POP) have contributed mechanistic evidence for the role of connective tissue defects, specifically impaired elastic matrix remodeling. Our objective was to summarize what mouse KO models for POP are available and what have we learned from these mouse models about the pathophysiological mechanisms of POP development. METHODS: We conducted a systematic review and reported narrative findings according to PRISMA guidelines. Two independent reviewers searched PubMed, Scopus and Embase for relevant manuscripts and conference abstracts for the time frame of January 1, 2000, to March 31, 2021. Conference abstracts were limited to the past 5 years. RESULTS: The search strategy resulted in 294 total titles. We ultimately included 25 articles and an additional 11 conference abstracts. Five KO models have been studied: Loxl1, Fbln5, Fbln3, Hoxa11 and Upii-sv40t. Loxl1 and Fbln5 KO models have provided the most reliable and predictable POP phenotype. Loxl1 KO mice develop POP primarily from failure to heal after giving birth, whereas Fbln5 KO mice develop POP with aging. These mouse KO models have been used for a wide variety of investigations including genetic pathways involved in development of POP, biomechanical properties of the pelvic floor, elastic fiber deposition, POP therapies and the pathophysiology associated with mesh complications. CONCLUSIONS: Mouse KO models have proved to be a valuable tool in the study of specific genes and their role in the development and progression of POP. They may be useful to study POP treatments and POP complications.


Assuntos
Proteínas da Matriz Extracelular , Prolapso de Órgão Pélvico , Aminoácido Oxirredutases/genética , Animais , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Feminino , Camundongos , Camundongos Knockout , Diafragma da Pelve , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...