Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(6): 1521-1524, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290354

RESUMO

Optically pumped whispering-gallery mode (WGM) lasing is observed from a thin-film GaN microdisk processed from GaN-on-Si InGaN/GaN multi-quantum well wafers by selective wet-etch removal of the substrate. Compared with thin-film microdisks processed from GaN-on-sapphire wafers through laser lift-off of the sapphire substrate, the exposed surface is significantly smoother as laser-induced damage is avoided, with a root-mean-square roughness of 1.3 nm compared with 5.8 nm of the latter wafer. The ∼8-µm diameter microdisks, fabricated by pattern transfer from a silica microsphere and dry etching, benefit from the surface smoothness to offer superior optical confinement within the cavity. WGM lasing thresholds of ∼2.9 mJ/cm2 and ∼3.5 mJ/cm2 with quality (Q)-factors of ∼3100 and ∼1700 are observed at the peak lasing wavelengths of ∼453 nm and ∼532 nm, respectively, which are significantly better than thin-film microdisks processed from GaN-on-sapphire wafers despite lower internal quantum efficiency, highlighting the importance of surface smoothness in such optical cavities.

2.
Nat Commun ; 12(1): 3631, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131125

RESUMO

Intensity and polarization are two fundamental components of light. Independent control of them is of tremendous interest in many applications. In this paper, we propose a general vectorial encryption method, which enables arbitrary far-field light distribution with the local polarization, including orientations and ellipticities, decoupling intensity from polarization across a broad bandwidth using geometric phase metasurfaces. By revamping the well-known iterative Fourier transform algorithm, we propose "à la carte" design of far-field intensity and polarization distribution with vectorial Fourier metasurfaces. A series of non-conventional vectorial field distribution, mimicking cylindrical vector beams in the sense that they share the same intensity profile but with different polarization distribution and a speckled phase distribution, is demonstrated. Vectorial Fourier optical metasurfaces may enable important applications in the area of complex light beam generation, secure optical data storage, steganography and optical communications.

3.
ACS Nano ; 15(7): 11385-11395, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34156820

RESUMO

Thermal properties have an outsized impact on efficiency and sensitivity of devices with nanoscale structures, such as in integrated electronic circuits. A number of thermal conductivity measurements for semiconductor nanostructures exist, but are hindered by the diffraction limit of light, the need for transducer layers, the slow scan rate of probes, ultrathin sample requirements, or extensive fabrication. Here, we overcome these limitations by extracting nanoscale temperature maps from measurements of bandgap cathodoluminescence in GaN nanowires of <300 nm diameter with spatial resolution limited by the electron cascade. We use this thermometry method in three ways to determine the thermal conductivities of the nanowires in the range of 19-68 W/m·K, well below that of bulk GaN. The electron beam acts simultaneously as a temperature probe and as a controlled delta-function-like heat source to measure thermal conductivities using steady-state methods, and we introduce a frequency-domain method using pulsed electron beam excitation. The different thermal conductivity measurements we explore agree within error in uniformly doped wires. We show feasible methods for rapid, in situ, high-resolution thermal property measurements of integrated circuits and semiconductor nanodevices and enable electron-beam-based nanoscale phonon transport studies.

4.
Sci Rep ; 10(1): 18919, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144622

RESUMO

It is shown that substrate pixelisation before epitaxial growth can significantly impact the emission color of semiconductor heterostructures. The wavelength emission from InxGa1-xN/GaN quantum wells can be shifted from blue to yellow simply by reducing the mesa size from 90 × 90 µm2 to 10 × 10 µm2 of the patterned silicon used as the substrate. This color shift is mainly attributed to an increase of the quantum well thickness when the mesa size decreases. The color is also affected, in a lesser extent, by the trench width between the mesas. Cathodoluminescence hyperspectral imaging is used to map the wavelength emission of the InxGa1-xN/GaN quantum wells. Whatever the mesa size is, the wavelength emission is red-shifted at the mesa edges due to a larger quantum well thickness and In composition.

5.
Opt Lett ; 45(15): 4276-4279, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735272

RESUMO

Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride-on-silicon platform with gallium nitride (GaN) as the main waveguide layer. The photonic circuits consist of a microdisk and a pulley waveguide, terminated by out-coupling gratings. In this Letter, we measure quality factors up to 3500 under continuous-wave excitation. Lasing is observed from 374 to 399 nm under pulsed excitation, achieving low-threshold energies of 0.14mJ/cm2 per pulse (threshold peak powers of 35kW/cm2). A large peak-to-background dynamic of around 200 is observed at the out-coupling grating for small gaps of 50 nm between the disk and the waveguide. These devices operate at the limit of what can be achieved with GaN in terms of operation wavelength.

6.
Nat Commun ; 11(1): 2651, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461637

RESUMO

Controlling light properties with diffractive planar elements requires full-polarization channels and accurate reconstruction of optical signal for real applications. Here, we present a general method that enables wavefront shaping with arbitrary output polarization by encoding both phase and polarization information into pixelated metasurfaces. We apply this concept to convert an input plane wave with linear polarization to a holographic image with arbitrary spatial output polarization. A vectorial ptychography technique is introduced for mapping the Jones matrix to monitor the reconstructed metasurface output field and to compute the full polarization properties of the vectorial far field patterns, confirming that pixelated interfaces can deflect vectorial images to desired directions for accurate targeting and wavefront shaping. Multiplexing pixelated deflectors that address different polarizations have been integrated into a shared aperture to display several arbitrary polarized images, leading to promising new applications in vector beam generation, full color display and augmented/virtual reality imaging.

7.
Sci Rep ; 10(1): 5642, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221397

RESUMO

Selective area thermal etching (SATE) of gallium nitride is a simple subtractive process for creating novel device architectures and improving the structural and optical quality of III-nitride-based devices. In contrast to plasma etching, it allows, for example, the creation of enclosed features with extremely high aspect ratios without introducing ion-related etch damage. We report how SATE can create uniform and organized GaN nanohole arrays from c-plane and (11-22) semi-polar GaN in a conventional MOVPE reactor. The morphology, etching anisotropy and etch depth of the nanoholes were investigated by scanning electron microscopy for a broad range of etching parameters, including the temperature, the pressure, the NH3 flow rate and the carrier gas mixture. The supply of NH3 during SATE plays a crucial role in obtaining a highly anisotropic thermal etching process with the formation of hexagonal non-polar-faceted nanoholes. Changing other parameters affects the formation, or not, of non-polar sidewalls, the uniformity of the nanohole diameter, and the etch rate, which reaches 6 µm per hour. Finally, the paper discusses the SATE mechanism within a MOVPE environment, which can be applied to other mask configurations, such as dots, rings or lines, along with other crystallographic orientations.

8.
Microsyst Nanoeng ; 5: 52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814992

RESUMO

Nano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties, enabling novel functionalities and applications. Although a variety of lithography techniques are currently employed to nano-engineer these materials, the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing. In this paper, we report on the use of a fast, robust and flexible emerging patterning technique called Displacement Talbot lithography (DTL), to successfully nano-engineer III-nitride materials. DTL, along with its novel and unique combination with a lateral planar displacement (D2TL), allow the fabrication of a variety of periodic nanopatterns with a broad range of filling factors such as nanoholes, nanodots, nanorings and nanolines; all these features being achievable from one single mask. To illustrate the enormous possibilities opened by DTL/D2TL, dielectric and metal masks with a number of nanopatterns have been generated, allowing for the selective area growth of InGaN/GaN core-shell nanorods, the top-down plasma etching of III-nitride nanostructures, the top-down sublimation of GaN nanostructures, the hybrid top-down/bottom-up growth of AlN nanorods and GaN nanotubes, and the fabrication of nanopatterned sapphire substrates for AlN growth. Compared with their planar counterparts, these 3D nanostructures enable the reduction or filtering of structural defects and/or the enhancement of the light extraction, therefore improving the efficiency of the final device. These results, achieved on a wafer scale via DTL and upscalable to larger surfaces, have the potential to unlock the manufacturing of nano-engineered III-nitride materials.

9.
Sci Rep ; 9(1): 18095, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792272

RESUMO

On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.

10.
Nat Commun ; 10(1): 2986, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324755

RESUMO

Allowing subwavelength-scale-digitization of optical wavefronts to achieve complete control of light at interfaces, metasurfaces are particularly suited for the realization of planar phase-holograms that promise new applications in high-capacity information technologies. Similarly, the use of orbital angular momentum of light as a new degree of freedom for information processing can further improve the bandwidth of optical communications. However, due to the lack of orbital angular momentum selectivity in the design of conventional holograms, their utilization as an information carrier for holography has never been implemented. Here we demonstrate metasurface orbital angular momentum holography by utilizing strong orbital angular momentum selectivity offered by meta-holograms consisting of GaN nanopillars with discrete spatial frequency distributions. The reported orbital angular momentum-multiplexing allows lensless reconstruction of a range of distinctive orbital angular momentum-dependent holographic images. The results pave the way to the realization of ultrahigh-capacity holographic devices harnessing the previously inaccessible orbital angular momentum multiplexing.

11.
Nano Lett ; 19(8): 4911-4918, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241962

RESUMO

Dipolar excitons offer a rich playground for both design of novel optoelectronic devices and fundamental many-body physics. Wide GaN/(AlGa)N quantum wells host a new and promising realization of dipolar excitons. We demonstrate the in-plane confinement and cooling of these excitons, when trapped in the electrostatic potential created by semitransparent electrodes of various shapes deposited on the sample surface. This result is a prerequisite for the electrical control of the exciton densities and fluxes, as well for studies of the complex phase diagram of these dipolar bosons at low temperature.

12.
Sci Rep ; 8(1): 15767, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361633

RESUMO

We investigate the optical properties of porous GaN films of different porosities, focusing on the behaviors of the excitonic features in time-integrated and time-resolved photoluminescence. A substantial enhancement of both excitonic emission intensity and recombination rate, along with insignificant intensity weakening under temperature rise, is observed in the porous GaN films. These observations are in line with (i) the local concentration of electric field at GaN nanoparticles and pores due to the depolarization effect, (ii) the efficient light extraction from the nanoparticles. Besides, the porosification enlarges the surface of the air/semiconductor interface, which further promotes the extraction efficiency and suppresses non-radiative recombination channels. Our findings open a way to increasing the emission efficiency of nanophotonic devices based on porous GaN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...