Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 122(2): 233-244, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819186

RESUMO

BACKGROUND: Metabolic alterations can serve as targets for diagnosis and cancer therapy. Due to the highly complex regulation of cellular metabolism, definite identification of metabolic pathway alterations remains challenging and requires sophisticated experimentation. METHODS: We applied a comprehensive kinetic model of the central carbon metabolism (CCM) to characterise metabolic reprogramming in murine liver cancer. RESULTS: We show that relative differences of protein abundances of metabolic enzymes obtained by mass spectrometry can be used to assess their maximal velocity values. Model simulations predicted tumour-specific alterations of various components of the CCM, a selected number of which were subsequently verified by in vitro and in vivo experiments. Furthermore, we demonstrate the ability of the kinetic model to identify metabolic pathways whose inhibition results in selective tumour cell killing. CONCLUSIONS: Our systems biology approach establishes that combining cellular experimentation with computer simulations of physiology-based metabolic models enables a comprehensive understanding of deregulated energetics in cancer. We propose that modelling proteomics data from human HCC with our approach will enable an individualised metabolic profiling of tumours and predictions of the efficacy of drug therapies targeting specific metabolic pathways.


Assuntos
Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas/genética , Proteoma/genética , Animais , Reprogramação Celular/genética , Simulação por Computador , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Proteoma/metabolismo
2.
Sci Rep ; 8(1): 16529, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409980

RESUMO

Cholestasis impairs liver regeneration following partial liver resection (PHx). Bile acid receptor farnesoid X-receptor (FXR) is a key mediator of liver regeneration. The effects of FXR agonist obeticholic acid (OCA) on liver (re)growth were therefore studied in cholestatic rats. Animals underwent sham surgery or reversible bile duct ligation (rBDL). PHx with concurrent internal biliary drainage was performed 7 days after rBDL. Animals were untreated or received OCA (10 mg/kg/day) per oral gavage from rBDL until sacrifice. After 7 days of OCA treatment, dry liver weight increased in the rBDL + OCA group, indicating OCA-mediated liver growth. Enhanced proliferation in the rBDL + OCA group prior to PHx concurred with a rise in Ki67-positive hepatocytes, elevated hepatic Ccnd1 and Cdc25b expression, and an induction of intestinal fibroblast growth factor 15 expression. Liver regrowth after PHx was initially stagnant in the rBDL + OCA group, possibly due to hepatomegaly prior to PHx. OCA increased hepatobiliary injury markers during BDL, which was accompanied by upregulation of the bile salt export pump. There were no differences in histological liver injury. In conclusion, OCA induces liver growth in cholestatic rats prior to PHx but exacerbates biliary injury during cholestasis, likely by forced pumping of bile acids into an obstructed biliary tree.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Ácido Quenodesoxicólico/análogos & derivados , Colestase/genética , Regeneração Hepática/efeitos dos fármacos , Administração Oral , Animais , Ácido Quenodesoxicólico/administração & dosagem , Ácido Quenodesoxicólico/farmacologia , Colestase/etiologia , Colestase/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Fosfatases cdc25/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...