Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 124(15): 8837-8850, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32071827

RESUMO

We use satellite ozone records and Global Modeling Initiative chemistry transport model simulations integrated with Modern Era Retrospective for Research and Analysis 2 meteorology to identify a metric that accurately captures the trend in Antarctic ozone attributable to the decline in ozone depleting substances (ODSs). The GMI CTM Baseline simulation with realistically varying ODS levels closely matches observed interannual to decadal scale variations in Antarctic September ozone over the past four decades. The expected increase or recovery trend is obtained from the differences between the Baseline simulation and one with identical meteorology and fixed 1995 ODS levels. The differences show that vortex-averaged column O3 has the greatest sensitivity to ODS change from 1 to 20 September. The observed vortex-averaged column O3 during this period produces a trend consistent with the expected recovery attributable to ODS decline. Trends from dates after 20 September have smaller sensitivity to ODS decline and are more uncertain due to transport variability. Simulations show that the greatest decrease in O3 loss (i.e., recovery) occurs inside the vortex near the edge. The polar cap metrics have vortex size-dependent bias and do not consistently sample this region. Because the 60-90°S 220 Dobson unit O3 mass deficit metric does not sample the edge region, its trend is lower than the expected trend; this is improved by area weighting. The 250-Dobson unit O3 mass deficit metric samples more of the edge region, which increases its trend. Approximately 25% of the September Antarctic O3 increase is due to higher O3 levels in June prior to winter depletion.

2.
Atmos Chem Phys ; 17(13): 8429-8452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32457810

RESUMO

We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618hPa) O3-CO correlations determined by the measurements from Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (fvGCM with sea surface temperature for 1995, GEOS4-DAS for 2005, and MERRA for 2005), allowing us to examine the sensitivity of model O3-CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological ozone profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that three simulations show significantly different global and regional distributions of O3 and CO concentrations, all simulations show similar patterns of O3-CO correlations on a global scale. These patterns are consistent with those derived from TES observations, except in the tropical easterly biomass burning outflow regions. Discrepancies in regional O3-CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various emissions drive global O3-CO correlation patterns, we examine the sensitivity of GMI/MERRA model-calculated O3 and CO concentrations and their correlations to emission types (fossil fuel, biomass burning, biogenic, and lightning NOx emissions). Fossil fuel and biomass burning emissions are mainly responsible for the strong positive O3-CO correlations over continental outflow regions in both hemispheres. Biogenic emissions have a relatively smaller impact on O3-CO correlations than other emissions, but are largely responsible for the negative correlations over the tropical eastern Pacific, reflecting the fact that O3 is consumed and CO generated during the atmospheric oxidation process of isoprene under low NOx conditions. We find that lightning NOx emissions degrade both positive correlations at mid-/high- latitudes and negative correlations in the tropics because ozone production downwind of lightning NOx emissions is not directly related to the emission and transport of CO. Our study concludes that O3-CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...