Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Spine ; 4: 102738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510635

RESUMO

Introduction: Modic Changes (MCs) are MRI alterations in spine vertebrae's signal intensity. This study introduces an end-to-end model to automatically detect and classify MCs in lumbar MRIs. The model's two-step process involves locating intervertebral regions and then categorizing MC types (MC0, MC1, MC2) using paired T1-and T2-weighted images. This approach offers a promising solution for efficient and standardized MC assessment. Research question: The aim is to investigate how different MRI normalization techniques affect MCs classification and how the model can be used in a clinical setting. Material and methods: A combination of Faster R-CNN and a 3D Convolutional Neural Network (CNN) is employed. The model first identifies intervertebral regions and then classifies MC types (MC0, MC1, MC2) using paired T1-and T2-weighted lumbar MRIs. Two datasets are used for model development and evaluation. Results: The detection model achieves high accuracy in identifying intervertebral areas, with Intersection over Union (IoU) values above 0.7, indicating strong localization alignment. Confidence scores above 0.9 demonstrate the model's accurate levels identification. In the classification task, standardization proves the best performances for MC type assessment, achieving mean sensitivities of 0.83 for MC0, 0.85 for MC1, and 0.78 for MC2, along with balanced accuracy of 0.80 and F1 score of 0.88. Discussion and conclusion: The study's end-to-end model shows promise in automating MC assessment, contributing to standardized diagnostics and treatment planning. Limitations include dataset size, class imbalance, and lack of external validation. Future research should focus on external validation, refining model generalization, and improving clinical applicability.

2.
Int J Comput Assist Radiol Surg ; 14(3): 545-561, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30604143

RESUMO

BACKGROUND: Radial 2D MRI scans of the hip are routinely used for the diagnosis of the cam type of femoroacetabular impingement (FAI) and of avascular necrosis (AVN) of the femoral head, both considered causes of hip joint osteoarthritis in young and active patients. A method for automated and accurate segmentation of the proximal femur from radial MRI scans could be very useful in both clinical routine and biomechanical studies. However, to our knowledge, no such method has been published before. PURPOSE: The aims of this study are the development of a system for the segmentation of the proximal femur from radial MRI scans and the reconstruction of its 3D model that can be used for diagnosis and planning of hip-preserving surgery. METHODS: The proposed system relies on: (a) a random forest classifier and (b) the registration of a 3D template mesh of the femur to the radial slices based on a physically based deformable model. The input to the system are the radial slices and the manually specified positions of three landmarks. Our dataset consists of the radial MRI scans of 25 patients symptomatic of FAI or AVN and accompanying manual segmentation of the femur, treated as the ground truth. RESULTS: The achieved segmentation of the proximal femur has an average Dice similarity coefficient (DSC) of 96.37 ± 1.55%, an average symmetric mean absolute distance (SMAD) of 0.94 ± 0.39 mm and an average Hausdorff distance of 2.37 ± 1.14 mm. In the femoral head subregion, the average SMAD is 0.64 ± 0.18 mm and the average Hausdorff distance is 1.41 ± 0.56 mm. CONCLUSIONS: We validated a semiautomated method for the segmentation of the proximal femur from radial MR scans. A 3D model of the proximal femur is also reconstructed, which can be used for the planning of hip-preserving surgery.


Assuntos
Fêmur/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Adolescente , Adulto , Algoritmos , Automação , Feminino , Impacto Femoroacetabular/diagnóstico por imagem , Cabeça do Fêmur/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/diagnóstico por imagem , Osteonecrose/diagnóstico por imagem , Cintilografia , Estresse Mecânico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...