Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38409337

RESUMO

Robust genetic systems to control the expression of transgenes in a spatial and temporal manner are a valuable asset for researchers. The GeneSwitch system induced by the drug RU486 has gained widespread use in the Drosophila community. However, some concerns were raised as negative effects were seen depending on the stock, transgene, stage, and tissue under study. Here, we characterized the adverse effects triggered by activating the GeneSwitch system in adult muscles using the MHC-GS-GAL4 driver. When a control, mock UAS-RNAi transgene was induced by feeding adult flies with RU486, we found that the overall muscle structure, including myofibrils and mitochondrial shape, was significantly disrupted and led to a significant reduction in the lifespan. Remarkably, lifespan was even shorter when 2 copies of the driver were used even without the mock UAS-RNAi transgene. Thus, researchers should be cautious when interpreting the results given the adverse effects we found when inducing RU486-dependent MHC-GS-GAL4 in adult muscles. To account for the impact of these effects we recommend adjusting the dose of RU486, setting up additional control groups, such as a mock UAS-RNAi transgene, as comparing the phenotypes between RU486-treated and untreated animals could be insufficient.


Assuntos
Mifepristona , Transgenes , Animais , Mifepristona/farmacologia , Músculos/metabolismo , Músculos/efeitos dos fármacos , Proteínas de Drosophila/genética , Animais Geneticamente Modificados , Interferência de RNA , Drosophila/genética , Drosophila/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Fenótipo , Longevidade/efeitos dos fármacos , Longevidade/genética
2.
Nat Metab ; 5(12): 2184-2205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996701

RESUMO

Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.


Assuntos
Síndrome de Barth , Animais , Humanos , Síndrome de Barth/genética , Síndrome de Barth/patologia , Citocromos c , Fosfolipídeos , Cardiolipinas , Ácidos Graxos Insaturados , Peroxidases
3.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107830

RESUMO

Cardiolipin (CL) is a phospholipid required for proper mitochondrial function. Tafazzin remodels CL to create highly unsaturated fatty acid chains. However, when TAFAZZIN is mutated, CL remodeling is impeded, leading to mitochondrial dysfunction and the disease Barth syndrome. Patients with Barth syndrome often have severe exercise intolerance, which negatively impacts their overall quality of life. Boosting NAD+ levels can improve symptoms of other mitochondrial diseases, but its effect in the context of Barth syndrome has not been examined. We demonstrate, for the first time, that nicotinamide riboside can rescue exercise tolerance and mitochondrial respiration in a Drosophila Tafazzin mutant and that the beneficial effects are dependent on sir2 and spargel. Overexpressing spargel increased the total abundance of CL in mutants. In addition, muscles and neurons were identified as key targets for future therapies because sir2 or spargel overexpression in either of these tissues is sufficient to restore the exercise capacity of Drosophila Tafazzin mutants.


Assuntos
Síndrome de Barth , Animais , Cardiolipinas , Drosophila , Tolerância ao Exercício , Ácidos Graxos Insaturados , Mitocôndrias , NAD , Fosfolipídeos , Qualidade de Vida , Respiração , Fatores de Transcrição
4.
Artigo em Inglês | MEDLINE | ID: mdl-35051613

RESUMO

Cardiolipin (CL) deficiency causes mitochondrial dysfunction and aberrant metabolism that are associated in humans with the severe disease Barth syndrome (BTHS). Several metabolic abnormalities are observed in BTHS patients and model systems, including decreased oxidative phosphorylation, reduced tricarboxylic acid (TCA) cycle flux, and accumulated lactate and D-ß-hydroxybutyrate, which strongly suggests that nicotinamide adenine dinucleotide (NAD) redox metabolism may be altered in CL-deficient cells. In this study, we identified abnormal NAD+ metabolism in multiple BTHS model systems and demonstrate that supplementation of NAD+ precursors such as nicotinamide mononucleotide (NMN) improves mitochondrial function. Improved mitochondrial function in the Drosophila model was associated with restored exercise endurance, which suggests a potential therapeutic benefit of NAD+ precursor supplementation in the management of BTHS patients.


Assuntos
Síndrome de Barth , Cardiolipinas , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Suplementos Nutricionais , Humanos , Mitocôndrias/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo
5.
Insect Biochem Mol Biol ; 133: 103548, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549817

RESUMO

When chill-susceptible insects are exposed to low temperatures they enter a temporary state of paralysis referred to as a chill coma. The most well-studied physiological mechanism of chill coma onset and recovery involves regulation of ion homeostasis. Previous studies show that changes in metabolism may also underlie the ability to recovery quickly, but the roles of genes that regulate metabolic homeostasis in chill coma recovery time (CCRT) are not well understood. Here, we investigate the roles of Sestrin and Spargel (Drosophila homolog of PGC-1α), which are involved in metabolic homeostasis and substrate oxidation, on CCRT in Drosophila melanogaster. We find that sestrin and spargel mutants have impaired CCRT. sestrin is required in the muscle and nervous system tissue for normal CCRT and spargel is required in muscle and adipose. On the basis that exercise induces sestrin and spargel, we also test the interaction of cold and exercise. We find that pre-treatment with one of these stressors does not consistently confer acute protection against the other. We conclude that Sestrin and Spargel are important in the chill coma response, independent of their role in exercise.


Assuntos
Drosophila melanogaster , Hipotermia/metabolismo , Sestrinas/metabolismo , Animais , Temperatura Baixa , Coma/reabilitação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Oxirredutases/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo
6.
Fly (Austin) ; 14(1-4): 80-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100141

RESUMO

The use of the Drosophila model for studying the broad beneficial effects of exercise training has grown over the past decade. As work using Drosophila as an exercise model becomes more widespread, the influence of genetic background on performance should be examined in order to better understand its influence on assessments used to quantitatively measure and compare exercise phenotypes. In this article, we review the various methods of exercise training Drosophila, and the performance of different wild-type Drosophila strains on various physiological assessments of exercise response. We conclude by summarizing the performance trends of commonly used strains.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Condicionamento Físico Animal , Animais , Drosophila melanogaster/classificação
7.
J Mol Cell Cardiol ; 127: 116-124, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30571977

RESUMO

In yeast, the Atg2-Atg18 complex regulates Atg9 recycling from phagophore assembly site during autophagy; their function in higher eukaryotes remains largely unknown. In a targeted screening in Drosophila melanogaster, we show that Mef2-GAL4-RNAi-mediated knockdown of Atg2, Atg9 or Atg18 in the heart and indirect flight muscles led to shortened healthspan (declined locomotive function) and lifespan. These flies displayed an accelerated age-dependent loss of cardiac function along with cardiac hypertrophy (increased heart tube wall thickness) and structural abnormality (distortion of the lumen surface). Using the Mef2-GAL4-MitoTimer mitochondrial reporter system and transmission electron microscopy, we observed significant elongation of mitochondria and reduced number of lysosome-targeted autophagosomes containing mitochondria in the heart tube but exaggerated mitochondrial fragmentation and reduced mitochondrial density in indirect flight muscles. These findings provide the first direct evidence of the importance of Atg2-Atg18/Atg9 autophagy complex in the maintenance of mitochondrial integrity and, regulation of heart and muscle functions in Drosophila, raising the possibility of augmenting Atg2-Atg18/Atg9 activity in promoting mitochondrial health and, muscle and heart function.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Coração/fisiologia , Longevidade/fisiologia , Mitocôndrias Cardíacas/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Drosophila melanogaster/ultraestrutura , Feminino , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Músculos/metabolismo
8.
Physiol Rep ; 6(3)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405656

RESUMO

Cardiolipin (CL) is a mitochondrial phospholipid that helps maintain normal structure of the inner mitochondrial membrane and stabilize the protein complexes of the electron transport chain to promote efficient ATP synthesis. Tafazzin, an acyl-transferase, is required for synthesis of the mature form of CL. Mutations in the tafazzin (TAZ) gene are associated with a human disorder known as Barth syndrome. Symptoms of Barth syndrome often include muscle weakness and exercise intolerance. Previous work demonstrates that Drosophila Taz mutants exhibit motor weakness, as measured by reduced flying and climbing abilities. However, Drosophila TAZ mutants' baseline endurance or response to endurance exercise training has not been assessed. Here, we find that TAZ mutants have reduced endurance and do not improve following a stereotypical exercise training paradigm, indicating that loss of TAZ function leads to exercise intolerance in Drosophila. Although cardiac phenotypes are observed in human Barth syndrome patients, TAZ mutants had normal resistance to cardiac pacing. In the future, endurance may be a useful screening tool to identify additional genetic modifiers of tafazzin.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Proteínas de Drosophila/genética , Condicionamento Físico Animal , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Mutação
9.
Bio Protoc ; 8(19): e3037, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34532514

RESUMO

Exercise induces beneficial systemic adaptations that reduce the incidence of age-related diseases. However, the molecular pathways that elicit these adaptations are not well understood. Understanding the molecular mechanisms that underlie the exercise response can lead to widely beneficial therapies. Large populations, relatively short lifespan, and easily modifiable genetics make Drosophila a well-suited model system for complex, longitudinal studies. We have developed an enforced climbing apparatus for Drosophila, known as the Power Tower, for the study of systemic exercise adaptations. The Power Tower takes advantage of the fly's natural instinct for negative geotaxis, an innate behavior to run upwards after being tapped to the bottom of their vial. Flies will continuously run either to the point of exhaustion or until the machine is turned off, whichever comes first. After 3 weeks of exercise, male Drosophila adapt to training with a number of conserved, easily quantifiable physiological improvements similar to those seen in mammalian models and humans. Here, we describe a useful endurance training protocol and a suite of post-training assessments that effectively quantify training effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...