Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 26: e52622, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294846

RESUMO

BACKGROUND: Students usually encounter stress throughout their academic path. Ongoing stressors may lead to chronic stress, adversely affecting their physical and mental well-being. Thus, early detection and monitoring of stress among students are crucial. Wearable artificial intelligence (AI) has emerged as a valuable tool for this purpose. It offers an objective, noninvasive, nonobtrusive, automated approach to continuously monitor biomarkers in real time, thereby addressing the limitations of traditional approaches such as self-reported questionnaires. OBJECTIVE: This systematic review and meta-analysis aim to assess the performance of wearable AI in detecting and predicting stress among students. METHODS: Search sources in this review included 7 electronic databases (MEDLINE, Embase, PsycINFO, ACM Digital Library, Scopus, IEEE Xplore, and Google Scholar). We also checked the reference lists of the included studies and checked studies that cited the included studies. The search was conducted on June 12, 2023. This review included research articles centered on the creation or application of AI algorithms for the detection or prediction of stress among students using data from wearable devices. In total, 2 independent reviewers performed study selection, data extraction, and risk-of-bias assessment. The Quality Assessment of Diagnostic Accuracy Studies-Revised tool was adapted and used to examine the risk of bias in the included studies. Evidence synthesis was conducted using narrative and statistical techniques. RESULTS: This review included 5.8% (19/327) of the studies retrieved from the search sources. A meta-analysis of 37 accuracy estimates derived from 32% (6/19) of the studies revealed a pooled mean accuracy of 0.856 (95% CI 0.70-0.93). Subgroup analyses demonstrated that the accuracy of wearable AI was moderated by the number of stress classes (P=.02), type of wearable device (P=.049), location of the wearable device (P=.02), data set size (P=.009), and ground truth (P=.001). The average estimates of sensitivity, specificity, and F1-score were 0.755 (SD 0.181), 0.744 (SD 0.147), and 0.759 (SD 0.139), respectively. CONCLUSIONS: Wearable AI shows promise in detecting student stress but currently has suboptimal performance. The results of the subgroup analyses should be carefully interpreted given that many of these findings may be due to other confounding factors rather than the underlying grouping characteristics. Thus, wearable AI should be used alongside other assessments (eg, clinical questionnaires) until further evidence is available. Future research should explore the ability of wearable AI to differentiate types of stress, distinguish stress from other mental health issues, predict future occurrences of stress, consider factors such as the placement of the wearable device and the methods used to assess the ground truth, and report detailed results to facilitate the conduct of meta-analyses. TRIAL REGISTRATION: PROSPERO CRD42023435051; http://tinyurl.com/3fzb5rnp.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Bases de Dados Factuais , Bibliotecas Digitais , Saúde Mental
2.
J Med Internet Res ; 25: e48754, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938883

RESUMO

BACKGROUND: Anxiety disorders rank among the most prevalent mental disorders worldwide. Anxiety symptoms are typically evaluated using self-assessment surveys or interview-based assessment methods conducted by clinicians, which can be subjective, time-consuming, and challenging to repeat. Therefore, there is an increasing demand for using technologies capable of providing objective and early detection of anxiety. Wearable artificial intelligence (AI), the combination of AI technology and wearable devices, has been widely used to detect and predict anxiety disorders automatically, objectively, and more efficiently. OBJECTIVE: This systematic review and meta-analysis aims to assess the performance of wearable AI in detecting and predicting anxiety. METHODS: Relevant studies were retrieved by searching 8 electronic databases and backward and forward reference list checking. In total, 2 reviewers independently carried out study selection, data extraction, and risk-of-bias assessment. The included studies were assessed for risk of bias using a modified version of the Quality Assessment of Diagnostic Accuracy Studies-Revised. Evidence was synthesized using a narrative (ie, text and tables) and statistical (ie, meta-analysis) approach as appropriate. RESULTS: Of the 918 records identified, 21 (2.3%) were included in this review. A meta-analysis of results from 81% (17/21) of the studies revealed a pooled mean accuracy of 0.82 (95% CI 0.71-0.89). Meta-analyses of results from 48% (10/21) of the studies showed a pooled mean sensitivity of 0.79 (95% CI 0.57-0.91) and a pooled mean specificity of 0.92 (95% CI 0.68-0.98). Subgroup analyses demonstrated that the performance of wearable AI was not moderated by algorithms, aims of AI, wearable devices used, status of wearable devices, data types, data sources, reference standards, and validation methods. CONCLUSIONS: Although wearable AI has the potential to detect anxiety, it is not yet advanced enough for clinical use. Until further evidence shows an ideal performance of wearable AI, it should be used along with other clinical assessments. Wearable device companies need to develop devices that can promptly detect anxiety and identify specific time points during the day when anxiety levels are high. Further research is needed to differentiate types of anxiety, compare the performance of different wearable devices, and investigate the impact of the combination of wearable device data and neuroimaging data on the performance of wearable AI. TRIAL REGISTRATION: PROSPERO CRD42023387560; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387560.


Assuntos
Ansiedade , Inteligência Artificial , Humanos , Ansiedade/diagnóstico , Transtornos de Ansiedade , Algoritmos , Bases de Dados Factuais
3.
JMIR Med Educ ; 9: e48291, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261894

RESUMO

The integration of large language models (LLMs), such as those in the Generative Pre-trained Transformers (GPT) series, into medical education has the potential to transform learning experiences for students and elevate their knowledge, skills, and competence. Drawing on a wealth of professional and academic experience, we propose that LLMs hold promise for revolutionizing medical curriculum development, teaching methodologies, personalized study plans and learning materials, student assessments, and more. However, we also critically examine the challenges that such integration might pose by addressing issues of algorithmic bias, overreliance, plagiarism, misinformation, inequity, privacy, and copyright concerns in medical education. As we navigate the shift from an information-driven educational paradigm to an artificial intelligence (AI)-driven educational paradigm, we argue that it is paramount to understand both the potential and the pitfalls of LLMs in medical education. This paper thus offers our perspective on the opportunities and challenges of using LLMs in this context. We believe that the insights gleaned from this analysis will serve as a foundation for future recommendations and best practices in the field, fostering the responsible and effective use of AI technologies in medical education.

4.
J Cereb Blood Flow Metab ; 43(10): 1713-1725, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36647768

RESUMO

Microvascular stalling, the process occurring when a capillary temporarily loses perfusion, has gained increasing interest in recent years through its demonstrated presence in various neuropathologies. Studying the impact of such stalls on the surrounding brain tissue is of paramount importance to understand their role in such diseases. Despite efforts trying to study the stalling events, investigations are hampered by their elusiveness and scarcity. In an attempt to alleviate these hurdles, we present here a novel methodology enabling transient occlusions of targeted microvascular segments through multiphoton excitation of Rose Bengal, an established photothrombotic agent. With n = 7 mice C57BL/6 J (5 males and 2 females) and 95 photothrombosis trials, we demonstrate the ability of triggering reversible blockages by illuminating a capillary segment during ∼300 s at 1000 nm, using a standard Ti:Sapphire femtosecond laser. Furthermore, we performed concurrent Optical Coherence Microscopy (OCM) angiography imaging of the microvascular network to highlight the specificity of the targeted occlusion and its duration. Through comparison with a control group, we conclude that blood flow cessation is indeed created by the photothrombotic agent via multiphoton excitation and is temporary, followed by a flow recovery in less than 24 h. Moreover, Immunohistology points toward a stalling mechanism driven by adherence of the neutrophil in the vascular lumen. This observation seems to be promoted by the inflammation locally created via multiphoton activation of Rose Bengal.


Assuntos
Lasers , Rosa Bengala , Masculino , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Capilares , Microscopia de Fluorescência por Excitação Multifotônica
5.
Neuroinformatics ; 20(3): 537-558, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34378155

RESUMO

In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model's fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.


Assuntos
Epilepsia , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Sci Rep ; 11(1): 14229, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244549

RESUMO

Recent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia de Coerência Óptica
7.
IEEE Trans Med Imaging ; 40(5): 1428-1437, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33534705

RESUMO

Ultrasound Localization Microscopy (ULM) can resolve the microvascular bed down to a few micrometers. To achieve such performance, microbubble contrast agents must perfuse the entire microvascular network. Microbubbles are then located individually and tracked over time to sample individual vessels, typically over hundreds of thousands of images. To overcome the fundamental limit of diffraction and achieve a dense reconstruction of the network, low microbubble concentrations must be used, which leads to acquisitions lasting several minutes. Conventional processing pipelines are currently unable to deal with interference from multiple nearby microbubbles, further reducing achievable concentrations. This work overcomes this problem by proposing a Deep Learning approach to recover dense vascular networks from ultrasound acquisitions with high microbubble concentrations. A realistic mouse brain microvascular network, segmented from 2-photon microscopy, was used to train a three-dimensional convolutional neural network (CNN) based on a V-net architecture. Ultrasound data sets from multiple microbubbles flowing through the microvascular network were simulated and used as ground truth to train the 3D CNN to track microbubbles. The 3D-CNN approach was validated in silico using a subset of the data and in vivo in a rat brain. In silico, the CNN reconstructed vascular networks with higher precision (81%) than a conventional ULM framework (70%). In vivo, the CNN could resolve micro vessels as small as 10 µ m with an improvement in resolution when compared against a conventional approach.


Assuntos
Aprendizado Profundo , Microscopia , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Microbolhas , Redes Neurais de Computação , Ultrassonografia
8.
IEEE Trans Med Imaging ; 40(1): 381-394, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32986549

RESUMO

Generating computational anatomical models of cerebrovascular networks is vital for improving clinical practice and understanding brain oxygen transport. This is achieved by extracting graph-based representations based on pre-mapping of vascular structures. Recent graphing methods can provide smooth vessels trajectories and well-connected vascular topology. However, they require water-tight surface meshes as inputs. Furthermore, adding vessels radii information on their graph compartments restricts their alignment along vascular centerlines. Here, we propose a novel graphing scheme that works with relaxed input requirements and intrinsically captures vessel radii information. The proposed approach is based on deforming geometric graphs constructed within vascular boundaries. Under a laplacian optimization framework, we assign affinity weights on the initial geometry that drives its iterative contraction toward vessels centerlines. We present a mechanism to decimate graph structure at each run and a convergence criterion to stop the process. A refinement technique is then introduced to obtain final vascular models. Our implementation is available on https://github.com/Damseh/VascularGraph. We benchmarked our results with that obtained using other efficient and state-of-the-art graphing schemes, validating on both synthetic and real angiograms acquired with different imaging modalities. The experiments indicate that the proposed scheme produces the lowest geometric and topological error rates on various angiograms. Furthermore, it surpasses other techniques in providing representative models that capture all anatomical aspects of vascular structures.


Assuntos
Angiografia , Encéfalo , Encéfalo/diagnóstico por imagem , Modelos Anatômicos
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1907-1910, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018374

RESUMO

Two-photon microscopy (TPM) can provide a detailed microscopic information of cerebrovascular structures. Extracting anatomical vascular models from TPM angiograms remains a tedious task due to image degeneration associated with TPM acquisitions and the complexity of microvascular networks. Here, we propose a fully automated pipeline capable of providing useful anatomical models of vascular structures captured with TPM. In the proposed method, we segment blood vessels using a fully convolutional neural network and employ the resulting binary labels to create an initial geometric graph enclosed within vessels boundaries. The initial geometry is then decimated and refined to form graphed curve skeletons that can retain both the vascular shape and its topology. We validate the proposed method on 3D realistic TPM angiographies and compare our results with that obtained through manual annotations.


Assuntos
Algoritmos , Microvasos , Encéfalo/diagnóstico por imagem , Microscopia , Microvasos/diagnóstico por imagem , Redes Neurais de Computação
10.
BME Front ; 2020: 8620932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37849965

RESUMO

Objective and Impact Statement. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The technique is computationally efficient, thus ideal for large-scale neurovascular analysis. Introduction. Vascular segmentation from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to various imaging systems and is able to segment large-scale angiograms. Methods. We employ a computationally efficient deep learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization on the network's output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of dimensions up to 808×808×702 µm. Results. To demonstrate the superior generalizability of our framework, we train on data from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger depth compared to the state-of-the-art. Conclusion. Our work provides a generalizable and computationally efficient anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were inaccessible before.

11.
IEEE J Biomed Health Inform ; 23(6): 2551-2562, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30507542

RESUMO

Graph models of cerebral vasculature derived from two-photon microscopy have shown to be relevant to study brain microphysiology. Automatic graphing of these microvessels remain problematic due to the vascular network complexity and two-photon sensitivity limitations with depth. In this paper, we propose a fully automatic processing pipeline to address this issue. The modeling scheme consists of a fully-convolution neural network to segment microvessels, a three-dimensional surface model generator, and a geometry contraction algorithm to produce graphical models with a single connected component. Based on a quantitative assessment using NetMets metrics, at a tolerance of 60 µm, false negative and false positive geometric error 19 rates are 3.8% and 4.2%, respectively, whereas false nega- 20 tive and false positive topological error rates are 6.1% and 4.5%, respectively. Our qualitative evaluation confirms the efficiency of our scheme in generating useful and accurate graphical models.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Microvasos/diagnóstico por imagem , Algoritmos , Animais , Aprendizado Profundo , Camundongos
12.
Front Neurosci ; 13: 1261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920472

RESUMO

Dysfunction in neurovascular coupling that results in a mismatch between cerebral blood flow and neuronal activity has been suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). Meanwhile, physical exercise is a powerful approach for maintaining cognitive health and could play a preventive role against the progression of AD. Given the fundamental role of capillaries in oxygen transport to tissue, our pilot study aimed to characterize changes in capillary hemodynamics with AD and AD supplemented by exercise. Exploiting two-photon microscopy, intrinsic signal optical imaging, and magnetic resonance imaging, we found hemodynamic alterations and lower vascular density with AD that were reversed by exercise. We further observed that capillary properties were branch order-dependent and that stimulation-evoked changes were attenuated with AD but increased by exercise. Our study provides novel indications into cerebral microcirculatory disturbances with AD and the modulating role of voluntary exercise on these alterations.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 661-665, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440483

RESUMO

Segmentation of microvessels measured using two-photon microscopy has been studied in the literature with limited success due to uneven intensities associated with optical imaging and shadowing effects. In this work, we address this problem using a customized version of a recently developed fully convolutional neural network, namely, FC-DensNets. To train and validate the network, manual annotations of 8 angiograms from two-photon microscopy was used. Segmentation results are then compared with that of a state-of-the-art scheme that was developed for the same purpose and also based on deep learning. Experimental results show improved performance of used FC-DenseNet in providing accurate and yet end-to-end segmentation of microvessels in two-photon microscopy.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microvasos/diagnóstico por imagem , Redes Neurais de Computação , Aprendizado Profundo , Humanos , Microscopia , Fótons
14.
Sci Rep ; 8(1): 8219, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844478

RESUMO

Despite the possible role of impaired cerebral tissue oxygenation in age-related cognition decline, much is still unknown about the changes in brain tissue pO2 with age. Using a detailed investigation of the age-related changes in cerebral tissue oxygenation in the barrel cortex of healthy, awake aged mice, we demonstrate decreased arteriolar and tissue pO2 with age. These changes are exacerbated after middle-age. We further uncovered evidence of the presence of hypoxic micro-pockets in the cortex of awake old mice. Our data suggests that from young to middle-age, a well-regulated capillary oxygen supply maintains the oxygen availability in cerebral tissue, despite decreased tissue pO2 next to arterioles. After middle-age, due to decreased hematocrit, reduced capillary density and higher capillary transit time heterogeneity, the capillary network fails to compensate for larger decreases in arterial pO2. The substantial decrease in brain tissue pO2, and the presence of hypoxic micro-pockets after middle-age are of significant importance, as these factors may be related to cognitive decline in elderly people.


Assuntos
Envelhecimento/metabolismo , Arteríolas/metabolismo , Encéfalo/irrigação sanguínea , Oxigênio/metabolismo , Vênulas/metabolismo , Animais , Circulação Cerebrovascular , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...