Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wearable Technol ; 2: e6, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38486635

RESUMO

Introduction: Recently, many industrial exoskeletons for supporting workers in heavy physical tasks have been developed. However, the efficiency of exoskeletons with regard to physical strain reduction has not been fully proved, yet. Several laboratory and field studies have been conducted, but still more data, that cannot be obtained solely by behavioral experiments, are needed to investigate effects on the human body. Methods: This paper presents an approach to extend laboratory and field research with biomechanical simulations using the AnyBody Modeling System. Based on a dataset recorded in a laboratory experiment with 12 participants using the exoskeleton Paexo Shoulder in an overhead task, the same situation was reproduced in a virtual environment and analyzed with biomechanical simulation. Results: Simulation results indicate that the exoskeleton substantially reduces muscle activity and joint reaction forces in relevant body areas. Deltoid muscle activity and glenohumeral joint forces in the shoulder were decreased between 54 and 87%. Simultanously, no increases of muscle activity and forces in other body areas were observed. Discussion: This study demonstrates how a simulation framework could be used to evaluate changes in internal body loads as a result of wearing exoskeletons. Biomechanical simulation results widely agree with experimental measurements in the previous laboratory experiment and supplement such by providing an insight into effects on the human musculoskeletal system. They confirm that Paexo Shoulder is an effective device to reduce physical strain in overhead tasks. The framework can be extended with further parameters, allowing investigations for product design and evaluation.

2.
J Biomech Eng ; 139(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28639682

RESUMO

Knowledge of the muscle, ligament, and joint forces is important when planning orthopedic surgeries. Since these quantities cannot be measured in vivo under normal circumstances, the best alternative is to estimate them using musculoskeletal models. These models typically assume idealized joints, which are sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The purpose of this study was to provide the mathematical details of a novel musculoskeletal modeling approach, called force-dependent kinematics (FDK), capable of simultaneously computing muscle, ligament, and joint forces as well as internal joint displacements governed by contact surfaces and ligament structures. The method was implemented into the anybody modeling system and used to develop a subject-specific mandible model, which was compared to a point-on-plane (POP) model and validated against joint kinematics measured with a custom-built brace during unloaded emulated chewing, open and close, and protrusion movements. Generally, both joint models estimated the joint kinematics well with the POP model performing slightly better (root-mean-square-deviation (RMSD) of less than 0.75 mm for the POP model and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although the presented mandible model still contains room for improvements, this study shows the capabilities of the FDK methodology for creating joint models that take the geometry and joint elasticity into account.


Assuntos
Mandíbula/fisiologia , Fenômenos Mecânicos , Modelos Biológicos , Fenômenos Biomecânicos , Humanos , Articulações/anatomia & histologia , Articulações/fisiologia , Ligamentos/anatomia & histologia , Ligamentos/fisiologia , Mandíbula/anatomia & histologia , Músculos/anatomia & histologia , Músculos/fisiologia
3.
J Biomech Eng ; 139(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28462424

RESUMO

Knowing the forces in the human body is of great clinical interest and musculoskeletal (MS) models are the most commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint contact, and ligament forces simultaneously is computationally highly demanding. The goal of this study was to develop a fast surrogate model of the tibiofemoral (TF) contact in a total knee replacement (TKR) model and apply it to force-dependent kinematic (FDK) simulations of activities of daily living (ADLs). Multiple domains were populated with sample points from the reference TKR contact model, based on reference simulations and design-of-experiments. Artificial neural networks (ANN) learned the relationship between TF pose and loads from the medial and lateral sides of the TKR implant. Normal and right-turn gait, rising-from-a-chair, and a squat were simulated using both surrogate and reference contact models. Compared to the reference contact model, the surrogate contact model predicted TF forces with a root-mean-square error (RMSE) lower than 10 N and TF moments lower than 0.3 N·m over all simulated activities. Secondary knee kinematics were predicted with RMSE lower than 0.2 mm and 0.2 deg. Simulations that used the surrogate contact model ran on average three times faster than those using the reference model, allowing the simulation of a full gait cycle in 4.5 min. This modeling approach proved fast and accurate enough to perform extensive parametric analyses, such as simulating subject-specific variations and surgical-related factors in TKR.


Assuntos
Artroplastia do Joelho , Fenômenos Mecânicos , Modelos Biológicos , Atividades Cotidianas , Fenômenos Biomecânicos , Humanos
4.
Gait Posture ; 35(4): 606-11, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22225853

RESUMO

We investigated the accuracy of a linear soft tissue artefact (STA) model in human movement analysis. Simultaneously recorded bone-mounted pin and skin marker data for the thigh and shank during walking, cutting and hopping were used to measure and model the motion of the skin marker clusters within anatomical reference frames (ARFs). This linear model allows skin marker movements relative to the underlying bone contrary to a rigid-body assumption. The linear model parameters were computed through a principal component analysis, which revealed that 95% of the variance of the STA motion for the thigh was contained in the first four principal components for all three tasks and all subjects. For the shank, 95% of the variance was contained in the first four principal components during walking and cutting and first five during hopping. For the thigh, the maximum residual artefact was reduced from 27.0mm to 5.1mm (walking), 22.7 mm to 3.0mm (cutting) and 16.2mm to 3.5mm (hopping) compared to a rigid-body assumption. Similar reductions were observed for the shank: 24.2mm to 1.9 mm (walking), 20.3mm to 1.9 mm (cutting) and 14.7 mm to 1.8mm (hopping). A geometric analysis of the first four principal components revealed that, within the ARFs, marker cluster STA is governed by rigid-body translations and rotations rather than deformations. The challenge remains, however, in finding the linear model parameters without bone pin data, but this investigation shows that relatively few parameters in a linear model are required to model the vast majority of the STA movements.


Assuntos
Artefatos , Simulação por Computador , Extremidade Inferior/fisiologia , Modelos Biológicos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Fotogrametria , Adulto , Fenômenos Biomecânicos , Intervalos de Confiança , Fluoroscopia , Humanos , Modelos Lineares , Masculino , Rotação , Adulto Jovem
6.
J Biomech ; 43(2): 268-73, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19879581

RESUMO

We investigated the effects of including kinematic constraints in the analysis of knee kinematics from skin markers and compared the result to simultaneously recorded trajectories of bone pin markers during gait of six healthy subjects. The constraint equations that were considered for the knee were spherical and revolute joints, which have been frequently used in musculoskeletal modelling. In the models, the joint centres and joint axes of rotations were optimised from the skin marker trajectories over the trial. It was found that the introduction of kinematic constraints did not reduce the error associated with soft tissue artefacts. The inclusion of a revolute joint constraint showed a statistically significant increase in the mean flexion/extension joint angle error and no statistically significant change for the two other mean joint angle errors. The inclusion of a spherical joint showed a statistically significant increase in the mean flexion/extension and abduction/adduction errors. In addition, when a spherical joint was included, a statistically significant increase in the sum of squared differences between measured marker trajectories and the trajectories of the pin markers in the models was seen. From this, it was concluded that both more advanced knee models as well as models of soft tissue artefacts should be developed before accurate knee kinematics can be calculated from skin markers.


Assuntos
Articulação do Joelho/fisiologia , Modelos Biológicos , Adulto , Fenômenos Biomecânicos , Tecido Conjuntivo/fisiologia , Humanos , Articulação do Joelho/anatomia & histologia , Análise dos Mínimos Quadrados , Masculino , Modelos Anatômicos , Movimento/fisiologia , Fenômenos Fisiológicos da Pele , Caminhada/fisiologia , Adulto Jovem
7.
Biol Cybern ; 87(3): 199-210, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200615

RESUMO

This paper presents a new and efficient method to calculate the line-of-action of a muscle as it wraps over bones and other tissues on its way from origin to insertion. The muscle is assumed to be a one-dimensional, massless, taut string, and the surfaces of bones that the muscle may wrap around are approximated by cross-sectional boundaries obtained by slicing geometrical models of bones. Each cross-sectional boundary is approximated by a series of connected line segments. Thus, the muscle path to be calculated is piecewise linear with vertices being the contact points on the cross-sectional boundaries of the bones. Any level of geometric accuracy can be obtained by increasing the number of cross sections and the number of line segments in each cross section. The algorithm is computationally efficient even for large numbers of cross sections.


Assuntos
Algoritmos , Osso e Ossos/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Animais , Humanos , Úmero/fisiologia , Articulação do Joelho/fisiologia , Contração Muscular/fisiologia , Costelas/fisiologia , Articulação do Ombro/fisiologia , Tíbia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...