Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37790739

RESUMO

Background: Angelica Yinzi (AYZ) is a Chinese traditional herbal formula reported to attenuate itches and inflammation caused by atopic dermatitis (AD). However, the underlying mechanism of AYZ in the attenuation of itchiness and inflammation remains unknown. Objective: This study investigated the mechanism of AYZ in reducing itchiness in mice with 1-chloro-2,4-dinitrobenzene- (DNCB-)-induced atopic dermatitis. Methods: Hematoxylin and eosin (H&E) and toluidine blue staining were used to evaluate pathological changes in skin tissue, while an enzyme-linked immunosorbent assay (ELISA) was used to assess the cytokine levels in the skin. After that, qRT-PCR was performed to determine the mRNA levels of cytokines in the skin. Immunofluorescence and western blotting analysis were further used to assess µ-opioid receptor (MOR) expression and immunohistochemistry to assess the p-ERK, p-AKT, and κ-opioid receptor (KOR). Results: The AYZ treatment alleviated the AD clinical symptoms, including decreasing the scratching frequency, the ear thickness, and the infiltration of mast cells, lymphocytes, inflammatory cells, and mononuclear cells. In addition, AYZ inhibited the expression of interleukin (IL)-13, thymic stromal lymphopoietin (TSLP), and reduced neuraminidase (NA), corticotropin-releasing factor (CRF), and reactive oxygen species (ROS) expression. Markers involved in itches, such as p-ERK and p-AKT, were significantly downregulated following AYZ treatment. Besides, AYZ significantly increased MOR expression and downregulated KOR in the epidermis and spinal cord. Conclusion: Our findings imply that AYZ ameliorates pruritus-related AD through skin repair, antioxidation, and balancing peripheral MOR and KOR. The findings in this study lay a theoretical foundation for the control mechanism of peripheral itch.

2.
Saudi Pharm J ; 30(10): 1426-1434, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36387340

RESUMO

Background: Atopic dermatitis (AD), characterized by eczema as a chronic pruritic inflammatory skin disease, has become a serious health problem with recurrent clinical episodes. However, current clinical treatments have limited relief and are accompanied by adverse effects. Therefore, there is a necessity to develop new effective drugs for AD treatment. Angelica Yinzi (AYZ) is a classic ancient prescription for nourishing blood, moistening dryness, dispelling wind, and relieving itching. However, its mechanism for alleviating atopic dermatitis remains unknown. Therefore, this study aimed at determining the effects of AYZ and its potential mechanism in alleviating AD-like symptoms. Methods: In the present study, we used 1-chloro-2,4-dinitrobenzene (DNCB) to establish a mouse model of atopic dermatitis, where DNCB readily penetrates the epidermis to cause inflammation. Histopathological analysis was performed to examine the thickening of dorsal skin and infiltration in the inflammatory and mast cells in C57BL/6 mice. Additionally, the immunoglobulin E (IgE) levels in serum were determined by enzyme-linked immunosorbent assay (ELISA) kits. The IL-1ß and TNF-α expression were detected using qRT-PCR. Next, the Western blotting and immunohistochemistry assays were performed to assess the contribution of MAPKs/NF-κB signaling pathways and the NLRP3 inflammasome in AD responses. Results: Histopathological examination revealed that AYZ reduced the epidermal thickness of AD-like lesioned skin and repressed the infiltration of mast cells into AD-like lesioned skin. AYZ significantly decreased the phosphorylation of p38 MAPK, JNK, ERK and NF-κB and downregulated serum IgE levels and IL-1ß and TNF-α mRNA levels. Additionally, the NLRP3, ASC, Caspase-1, and IL-1ß expression in dorsal skin were effectively down-regulated following AYZ treatment (p < 0.05 and p < 0.01). Conclusion: These findings revealed that AYZ effectively suppressed AD-induced skin inflammation by inhibiting the activation of the NLRP3 inflammasome and the MAPKs/NF-kB signaling. Therefore, AYZ is a potential therapeutic agent against AD in the clinical setting.

3.
Phytomedicine ; 95: 153875, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34911003

RESUMO

BACKGROUND: Poria cocos (Schw.) Wolf (PC), a fungus, has been used for more than 2000 years as a food and medicine in China. It has a very good therapeutic effect for functional dyspepsia (FD). However, the material basis and mechanism of PC on FD were not reported. PURPOSE: To investigate the function and potential mechanisms of PC including its three extracts (triterpenoid, PCT; water-soluble polysaccharide, PCWP; acidic polysaccharide, PCAP) on FD. STUDY DESIGN: The study explored the therapeutic effect of PC and its three extracts on FD in rats for the first time and discussed its mechanisms based on brain-gut peptides, immunity and repair of the gastrointestinal mucosa. METHODS: The chemical components of PC extracts were analyzed and quantified using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS) and gel permeation chromatography coupled with size exclusion chromatography (GPC/SEC). The FD rat models were established using weight-loaded forced swimming and alternate-day fasting for 42 days. After 14 days of treatment, the effect and mechanisms were investigated using ELISA, histopathology, immunohistochemistry as well as Western blot. RESULTS: Seventy-seven triterpenoids in PCT were identified. PCWP was primarily composed of component A (Mw: 3.831 × 107 Da), component B (Mw: 5.650 × 106 Da) and component C (Mw: 113,117 Da). PCAP was a homogeneous composition with an average Mw of 74,320 Da. PCT, PCWP and PCAP alleviated the symptoms of FD. These extracts promoted the repair of gastrointestinal mucosa and regulated the balance between the T helper cell (Th)1/Th2 axis and the Th17/Treg axis. PCT and PCWP regulated brain-gut peptides more effectively, PCWP and PCAP enhanced immunity more effectively. Further study demonstrated that these extracts may have enhanced immunity via the Toll-like receptor (TLR) and c-Jun N-terminal kinase (JNK) signaling pathways. CONCLUSIONS: PC extracts showed therapeutic effects on FD rats, and the mechanism of action involved multiple pathways. PCAP, which is often discarded in traditional applications, was effective. Our study provides new ideas for the application and development of PC extracts.


Assuntos
Dispepsia , Poria , Wolfiporia , Animais , Encéfalo , Mucosa , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Ratos
4.
Artigo em Inglês | MEDLINE | ID: mdl-34539800

RESUMO

In Uygur medicine, Huganbuzure granule (HBG) is one of the classical prescriptions for liver protection. However, its role in immune liver injury remains unknown. This study evaluates the effect of HBG on concanavalin-A- (ConA-) induced immune liver injury and investigates its protective underlying mechanism. BALB/c mice were randomly divided into five groups (n = 24 mice per group): control, ConA, 1.6 g/kg HBG + ConA, 3.2 g/kg HBG + ConA, and 6 mg/kg prednisolone + ConA. HBG was intragastrically administrated once daily for ten consecutive days, prior to ConA (20 mg/kg) injection. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), superoxide dismutase (SOD), and malondialdehyde (MDA) in mouse serum were measured after ConA injection. Moreover, liver-related mRNA levels were evaluated by qPCR. The detection of liver-related proteins was assessed by immunohistochemistry and western blot analysis. Compared with the ConA group, HBG reduced the mRNA expression of IL-17A and IFN-γ and the protein expression of T-bet and ROR-γt. In addition, HBG increased the mRNA expression of IL-4 and TGF-ß and protein expression of GATA3 and Foxp3, indicating that HBG regulated the balance of Th1/Th2 and Th17/Treg. Furthermore, HBG alleviated immune liver injury by reducing oxidative stress, inhibiting apoptosis, and decreasing the expression of p-JNK, p-ERK, p-p38, p-JAK1, p-STAT1, p-STAT3, and IRF1. Our data suggested that HBG attenuated ConA-induced immune liver injury by regulating the immune balance and inhibiting JAK1/STATs/IRF1 signaling, thereby reducing apoptosis induced by JNK activation. The findings indicate that HBG may be a promising drug for immune liver injury.

5.
Curr Med Sci ; 40(3): 539-547, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32681257

RESUMO

Yu Gan Long (YGL) is a Chinese traditional herbal formula which has been reported to attenuate liver fibrosis for many years and we have explored its anti-fibrotic mechanism through blocking transforming growth factor (TGF-ß) in the previous study. But the mechanisms associated with platelet-derived growth factor (PDGF)-BB remain obscure. In this study, we further investigated the mechanism of YGL reducing carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Our results showed that YGL suppressed CCl4-induced upregulation of collagen IV (Col IV), type HI precollagen (PCHI), hyaluronuc acid (HA) and laminin (LN), which are implicated in liver fibrosis. Also, YGL reduced the α-smooth muscle actin (α-SMA) expression, which acts as the indicator of liver fibrosis. Furthermore, YGL decreased the serum levels of hepatic stellate cell (HSC) mitogen PDGF-BB and inflammation cytokines, including TNF-α, IL-1ß, IL-6. Markers involved in liver fibrosis, such as Ras, p-Raf-1, p-ERK1/2, p-JNK, p-P38, p-PI3K, p-AKT, p-JAKl, p-STAT3 were downregulated significantly after treatment with YGL. Our results indicated that YGL ameliorated CCl4-induced liver fibrosis by reducing inflammation cytokines production, and suppressing Ras/ERK, PI3K/AKT, and JAK1/STAT3 signaling pathways, which provided further evidence towards elucidation of the anti-fibrotic mechanism of YGL.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Tetracloreto de Carbono/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Medicina Tradicional Chinesa/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
6.
J Cell Biochem ; 120(6): 9648-9655, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520122

RESUMO

Asthma is characterized by airway inflammatory infiltration, which leads to airway remodeling and airway hyperreactivity. Coleus forskohlii (CFK) has been used to treat asthma, however, the mechanism involved is not clear. To explore the antiasthma mechanism of extracts of Coleus forskohlii (ECFK), guinea pigs were administered with a spray of phosphoric acid histamine, and rats were sensitized with ovalbumin (OVA). Hematoxylin and eosin staining (H&E) were used to evaluate pathological changes in lung tissue. Enzyme-linked immunosorbent assay (ELISA) was used to determine cytokine levels in serum and bronchoalveolar lavage fluid (BALF). Immunohistochemistry and Western blot analysis were used to assess the expression of intercellular cell adhesion molecule-1 (ICAM-1), phosphorylation of p65 (p-p65), matrix metallopeptidase 9 (MMP-9), and tissue inhibitor of metalloproteinase 1 (TIMP-1). After ECFK treatment, the asthma incubation period of guinea pigs was significantly prolonged. The H&E results showed that the number of eosinophils in the 12.8 g/kg ECFK group was significantly lower when compared with the control group. Moreover, ELISA results demonstrated that interleukin (IL)-4, IL-5, and IL-17 in serum and BALF were significantly decreased, and interferon-γ (IFN-γ) and IL-10 were increased after ECFK treatment. In addition, ECFK treatment resulted in downregulation of ICAM-1, p-p65, MMP-9, and TIMP-1 in lung tissue after being sensitized by OVA. In conclusion, our findings indicated that ECFK significantly alleviated OVA-induced inflammatory infiltration and airway remodeling in asthma. This study laid a theoretical foundation for the clinical use of ECFK.


Assuntos
Asma/tratamento farmacológico , Tosse/tratamento farmacológico , Matriz Extracelular/metabolismo , Extratos Vegetais/farmacologia , Plectranthus/química , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Asma/metabolismo , Tosse/metabolismo , Citocinas/metabolismo , Cobaias , Inflamação/tratamento farmacológico , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
7.
Biomed Pharmacother ; 106: 1332-1338, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119204

RESUMO

Yu Gan Long (YGL) is a Chinese traditional herbal medicine that has been used in the treatment of liver fibrosis for many years in clinical practice. However, its anti-hepatofibrotic mechanism has not been studied yet. In this study, the effect and mechanism of YGL in reducing liver fibrosis was demonstrated in vivo. Our results showed that liver fibrosis biomarkers collagen IV (Col IV), type III precollagen (PCIII), hyaluronuc acid (HA) and laminin (LN), were increased after CCl4 treatment and decreased by YGL. Among the liver fibrosis indicators, α-smooth muscle actin (α-SMA) was decreased by YGL in the CCl4-treated rats, while MMP2 and MMP9 was upregulated followed by TIMP1 downregulation. Proteins involved in liver fibrosis such as p-Smad2, p-Smad3 and Smad4 were down-regulated, while Smad7 protein was up-regulated by YGL after CCl4-induced liver damage. YGL also suppressed the increase of TGF-ß1, TNF-α, IL-1ß, IL-6, IL-4 and IL-17 A induced by CCl4 treatment, while promoted IFN-γ expression. Finally, the transcription factors ROR-γt and GATA3 were decreased, while T-bet was increased after YGL treatment. These results suggested that YGL attenuated CCl4-induced hepatic fibrosis by accelerating the extracellular matrix degradation, blocking the TGF-ß1/Smad signaling pathway and modulating the balance among IL-4, IL-17 A and IFN-γ, demonstrating YGL protective effect and its potential mechanisms in treating liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Matriz Extracelular/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Relação Dose-Resposta a Droga , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/imunologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Fosforilação , Proteólise , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA