Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 184: 108491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340405

RESUMO

Copper (Cu) is a key cofactor in ammonia monooxygenase functioning responsible for the first step of nitrification, but its excess availability impairs soil microbial functions and plant growth. Yet, the impact of Cu on nitrogen (N) cycling and process-related variables in cropland soils remains unexplored globally. Through a meta-analysis of 1209-paired and 319-single observations from 94 publications, we found that Cu (Cu addition or Cu-polluted soil) reduced soil potential nitrification by 33.8% and nitrite content by 73.5% due to reduced soil enzyme activities of nitrification and urease, microbial biomass content, and ammonia oxidizing archaea abundance. The response ratio of potential nitrification decreased with increasing Cu concentration, soil total N, and clay content. We further noted that soil potential nitrification inhibited by 46.5% only when Cu concentration was higher than 150 mg kg-1, while low Cu concentration (less than 150 mg kg-1) stimulated soil nitrate by 99.0%. Increasing initial soil Cu content stimulated gross N mineralization rate due to increased soil organic carbon and total N, but inhibited gross nitrification rate, which ultimately stimulated gross N immobilization rate as a result of increased the residence time of ammonium. This resulted in a lower ratio of gross nitrification rate to gross N immobilization rate, implying a lower potential risk of N loss as evidenced by decreased nitrous oxide emissions with increasing initial soil Cu content. Our analysis offers initial global evidence that Cu has an important role in controlling soil N availability and loss through its effect on N production and consumption.


Assuntos
Cobre , Solo , Carbono , Produtos Agrícolas , Nitrogênio , Oxirredução , Microbiologia do Solo
2.
Environ Sci Technol ; 58(6): 2786-2797, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311839

RESUMO

Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and ß-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.


Assuntos
Ecossistema , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Florestas , Carbono , Fósforo/metabolismo
3.
Glob Chang Biol ; 30(1): e17003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943245

RESUMO

Identifying tipping points in the relationship between aridity and gross nitrogen (N) cycling rates could show critical vulnerabilities of terrestrial ecosystems to climate change. Yet, the global pattern of gross N cycling response to aridity across terrestrial ecosystems remains unknown. Here, we collected 14,144 observations from 451 15 N-labeled studies and used segmented regression to identify the global threshold responses of soil gross N cycling rates and soil process-related variables to aridity index (AI), which decreases as aridity increases. We found on a global scale that increasing aridity reduced soil gross nitrate consumption but increased soil nitrification capacity, mainly due to reduced soil microbial biomass carbon (MBC) and N (MBN) and increased soil pH. Threshold response of gross N production and retention to aridity was observed across terrestrial ecosystems. In croplands, gross nitrification and extractable nitrate were inhibited with increasing aridity below the threshold AI ~0.8-0.9 due to inhibited ammonia-oxidizing archaea and bacteria, while the opposite was favored above this threshold. In grasslands, gross N mineralization and immobilization decreased with increasing aridity below the threshold AI ~0.5 due to decreased MBN, but the opposite was true above this threshold. In forests, increased aridity stimulated nitrate immobilization below the threshold AI ~1.0 due to increased soil C/N ratio, but inhibited ammonium immobilization above the threshold AI ~1.3 due to decreased soil total N and increased MBC/MBN ratio. Soil dissimilatory nitrate reduction to ammonium decreased with increasing aridity globally and in forests when the threshold AI ~1.4 was passed. Overall, we suggest that any projected increase in aridity in response to climate change is likely to reduce plant N availability in arid regions while enhancing it in humid regions, affecting the provision of ecosystem services and functions.


Assuntos
Compostos de Amônio , Ecossistema , Solo , Nitratos , Nitrogênio/análise , Microbiologia do Solo
4.
Sci Total Environ ; 882: 163641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080304

RESUMO

The effects of exotic plants on soil nitrogen (N) transformations may influence species invasion success. However, the complex interplay between invasive plant N uptake and N transformation in soils remains unclear. In the present study, a series of 15N-labeled pot experiments were carried out with Solidago canadensis L. (S. canadensis), an invasive plant, and the Ntrace tool was used to clarify the preferred inorganic N form and its effects on soil N transformation. According to the results, nitrate-N (NO3--N) uptake rates by S. canadensis were 2.38 and 2.28 mg N kg-1 d-1 in acidic and alkaline soil, respectively, which were significantly higher than the ammonium-N (NH4+-N) uptake rates (1.76 and 1.56 mg N kg-1 d-1, respectively), indicating that S. canadensis was a NO3--N-preferring plant, irrespective of pH condition. Gross N mineralization rate was 0.41 mg N kg-1 d-1 in alkaline soil in the presence of S. canadensis L., which was significantly lower than that in the control (no plant, CK, 2.44 mg N kg-1 d-1). Gross autotrophic nitrification rate also decreased from 5.95 mg N kg-1 d-1 in the CK to 0.04 mg N kg-1 d-1 in the presence of S. canadensis in alkaline soil. However, microbial N immobilization rate increased significantly from 1.09 to 2.16 mg N kg-1 d-1, and from 0.02 to 2.73 mg N kg-1 d-1 after S. canadensis planting, in acidic and alkaline soil, respectively. Heterotrophic nitrification rate was stimulated in the presence of S. canadensis to provide NO3--N to support the N requirements of plants and microbes. The results suggested that S. canadensis can influence the mineralization-immobilization turnover (MIT) to optimize its N requirements while limiting N supply for other plants in the system. The results of the present study enhance our understanding of the competitiveness and mechanisms of invasion of alien plants.


Assuntos
Solidago , Nitrogênio/análise , Solo , Nitrificação , Nitratos/análise
5.
Microb Ecol ; 85(3): 980-997, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35948832

RESUMO

Application of reductive soil disinfestation (RSD), biochar, and antagonistic microbes have become increasingly popular strategies in a microbiome-based approach to control soil-borne diseases. The combined effect of these remediation methods on the suppression of cucumber Fusarium wilt associated with microbiota reconstruction, however, is still unknown. In this study, we applied RSD treatment together with biochar and microbial application of Trichoderma and Bacillus spp. in Fusarium-diseased cucumbers to investigate their effects on wilt suppression, soil chemical changes, microbial abundances, and the rhizosphere communities. The results showed that initial RSD treatment followed by biochar amendment (RSD-BC) and combined applications of microbial inoculation and biochar (RSD-SQR-T37-BC) decreased nitrate concentration and raised soil pH, soil organic carbon (SOC), and ammonium in the treated soils. Under RSD, the applications of Bacillus (RSD-SQR), Trichoderma (RSD-T37), and biochar (RSD-BC) suppressed wilt incidence by 26.8%, 37.5%, and 32.5%, respectively, compared to non-RSD treatments. Moreover, RSD-SQR-T37-BC and RSD-T37 caused greater suppressiveness of Fusarium wilt and F. oxysporum by 57.0 and 33.5%, respectively. Rhizosphere beta diversity and alpha diversity revealed a difference between RSD-treated and non-RSD microbial groups. The significant increase in the abundance, richness, and diversity of bacteria, and the decrease in the abundance and diversity of fungi under RSD-induced treatments attributed to the general suppression. Identified bacterial (Bacillus, Pseudoxanthomonas, Flavobacterium, Flavisolibacter, and Arthrobacter) and fungal (Trichoderma, Chaetomium, Cladosporium, Psathyrella, and Westerdykella) genera were likely the potential antagonists of specific disease suppression for their significant increase of abundances under RSD-treated soils and high relative importance in linear models. This study infers that the RSD treatment induces potential synergies with biochar amendment and microbial applications, resulting in enhanced general-to-specific suppression mechanisms by changing the microbial community composition in the cucumber rhizosphere.


Assuntos
Bacillus , Cucumis sativus , Fusarium , Microbiota , Solo/química , Carbono , Rizosfera , Bactérias , Microbiologia do Solo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Sci Total Environ ; 828: 154418, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276137

RESUMO

Studies have shown that dissolved organic matters (DOMs) may affect soil nutrient availability to plants due to their effect on microbial communities; however, the relationships of soil DOM-bacterial community-N function in response to root exudates remains poorly understand. Here, we evaluated the DOM composition, bacterial taxonomic variation and nitrogen transformation rates in both acidic and alkaline soils, with or without the typical nitrate preference plant (wheat, Triticum aestivum L.). After 30 days' cultivation, DOM compositions such as sugars, amines, amino acids, organic acid, and ketone were significantly increased in soil with wheat vs. bare soil, and these compounds were mainly involved in nitrogen metabolism pathways. Soil core bacterial abundance was changed while bacterial community diversity decreased in response to wheat planting. Function prediction analysis based on FAPROTAX software showed that the bacterial community were significantly (p < 0.05) affiliated with nitrification and organic compound degradation. Additionally, db-RDA and VPA analysis suggested that the contribution of soil DOM to the variance of bacterial community was stronger than that of soil available nutrients. Furthermore, the N-transformation related bacteria like Burkholderiales and ammonia-oxidizing bacteria (AOB) were positively correlated with soil gross nitrification rate, confirming that the soil N transformation was enhanced in both acidic and alkaline soils. Our results provide insight into how soil DOM affects the community structure and function of bacteria to regulate the process of nitrogen transformation in plant-soil system.


Assuntos
Nitrificação , Solo , Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Matéria Orgânica Dissolvida , Nitrogênio/metabolismo , Oxirredução , Solo/química , Microbiologia do Solo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...