Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220195, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866381

RESUMO

The Atlantic meridional overturning circulation (AMOC) is a large-scale circulation pattern responsible for northward heat transport in the Atlantic and is associated with climate variations on a wide range of time scales. Observing the time-varying AMOC has fundamentally changed our understanding of the large-scale ocean circulation and its interaction with the climate system, as well as identified shortcomings in numerical simulations. With a wide range of gains already achieved, some now ask whether AMOC observations should continue. A measured approach is required for a future observing system that addresses identified gaps in understanding, accounts for shortcomings in observing methods and maximizes the potential to guide improvements in ocean and climate models. Here, we outline a perspective on future AMOC observing and steps that the community should consider to move forward. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
Nature ; 583(7818): 796-800, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728237

RESUMO

Quantifying signals and uncertainties in climate models is essential for the detection, attribution, prediction and projection of climate change1-3. Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain4. This leads to low confidence in regional projections, especially for precipitation, over the coming decades5,6. The chaotic nature of the climate system7-9 may also mean that signal uncertainties are largely irreducible. However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate model predictions of the past six decades and show that decadal variations in North Atlantic winter climate are highly predictable, despite a lack of agreement between individual model simulations and the poor predictive ability of raw model outputs. Crucially, current models underestimate the predictable signal (the predictable fraction of the total variability) of the North Atlantic Oscillation (the leading mode of variability in North Atlantic atmospheric circulation) by an order of magnitude. Consequently, compared to perfect models, 100 times as many ensemble members are needed in current models to extract this signal, and its effects on the climate are underestimated relative to other factors. To address these limitations, we implement a two-stage post-processing technique. We first adjust the variance of the ensemble-mean North Atlantic Oscillation forecast to match the observed variance of the predictable signal. We then select and use only the ensemble members with a North Atlantic Oscillation sufficiently close to the variance-adjusted ensemble-mean forecast North Atlantic Oscillation. This approach greatly improves decadal predictions of winter climate for Europe and eastern North America. Predictions of Atlantic multidecadal variability are also improved, suggesting that the North Atlantic Oscillation is not driven solely by Atlantic multidecadal variability. Our results highlight the need to understand why the signal-to-noise ratio is too small in current climate models10, and the extent to which correcting this model error would reduce uncertainties in regional climate change projections on timescales beyond a decade.

3.
Science ; 264(5162): 1123-6, 1994 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-17744896

RESUMO

Ocean models routinely used in simulations of the Earth's climate do not resolve mesoscale eddies because of the immense computational cost. A new parameterization of the effects of these eddies has been implemented in a widely used model. A comparison of its solution with that of the conventional parameterization shows significant improvements in the global temperature distribution, the poleward and surface heat fluxes, and the locations of deep-water formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...