Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958417

RESUMO

Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.

2.
Genes (Basel) ; 14(9)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37761947

RESUMO

It has been previously shown that the aldehyde dehydrogenase (ALDH) family member ALDH1A1 has a significant association with acute myeloid leukemia (AML) patient risk group classification and that AML cells lacking ALDH1A1 expression can be readily killed via chemotherapy. In the past, however, a redundancy between the activities of subgroup members of the ALDH family has hampered the search for conclusive evidence to address the role of specific ALDH genes. Here, we describe the bioinformatics evaluation of all nineteen member genes of the ALDH family as prospective actionable targets for the development of methods aimed to improve AML treatment. We implicate ALDH1A1 in the development of recurrent AML, and we show that from the nineteen members of the ALDH family, ALDH1A1 and ALDH2 have the strongest association with AML patient risk group classification. Furthermore, we discover that the sum of the expression values for RNA from the genes, ALDH1A1 and ALDH2, has a stronger association with AML patient risk group classification and survival than either one gene alone does. In conclusion, we identify ALDH1A1 and ALDH2 as prospective actionable targets for the treatment of AML in high-risk patients. Substances that inhibit both enzymatic activities constitute potentially effective pharmaceutics.


Assuntos
Aldeído Desidrogenase , Leucemia Mieloide Aguda , Humanos , Aldeído Desidrogenase/genética , Estudos Prospectivos , Aldeído-Desidrogenase Mitocondrial/genética , Biologia Computacional , Leucemia Mieloide Aguda/genética
3.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298333

RESUMO

The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Oxidantes , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas , RNA , Família Aldeído Desidrogenase 1
5.
Cancers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201575

RESUMO

8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.

6.
Eur Urol Focus ; 8(3): 648-650, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339415

RESUMO

There are no predictive biomarkers in clinical use for the neoadjuvant treatment of bladder cancer. Here we report on a recent randomized phase 2 trial validating the identification of predictive biomarkers using cell lines in the absence of patient response data.


Assuntos
Neoplasias da Bexiga Urinária , Biomarcadores , Linhagem Celular , Humanos , Terapia Neoadjuvante , Neoplasias da Bexiga Urinária/tratamento farmacológico
7.
Front Biosci (Schol Ed) ; 14(1): 8, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35320919

RESUMO

The enzymes that belong to the aldehyde dehydrogenase family are expressed in a variety of cells; yet activity of their main members characterizes stem cells, both normal and malignant. Several members of this family perform critical functions in stem cells, in general, and a few have been shown to have key roles in malignant tumors and their recurrence. In particular, ALDH1A1, which localizes to the cytosol and the nucleus, is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, and proves vital for the establishment of human AML xenografts in mice. ALDH2, which is located in mitochondria, has a major role in alcohol metabolism by clearing ethanol-derived acetaldehyde. Haematopoietic stem cells require ALDH2 for protection against acetaldehyde, which can cause damage to DNA, leading to insertions, deletions, chromosomal rearrangements, and translocations. Mutations compromise stem cell function, and thereby threaten blood homeostasis. We review here the potential of targeting the enzymatic activity of aldehyde dehydrogenases in acute leukemia.


Assuntos
Aldeído Desidrogenase , Leucemia Mieloide Aguda , Acetaldeído/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial , Animais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco
8.
Mol Biol Rep ; 49(4): 3321-3331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35028852

RESUMO

The expression and activity of enzymes that belong to the aldehyde dehydrogenases is a characteristic of both normal and malignant stem cells. ALDH1A1 is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, which include inhibitors of protein tyrosine kinases. Furthermore, ALDH1A1 proves vital for the establishment of human AML xenografts in mice. We review here important studies characterizing the role of ALDH1A1 in AML and its potential as a therapeutic target. We also analyze datasets from leading studies, and show that decreased ALDH1A1 RNA expression consistently characterizes the AML patient risk group with a favorable prognosis, while there is a consistent association of high ALDH1A1 RNA expression with high risk and poor overall survival. Our review and analysis reinforces the notion to employ both novel as well as existing inhibitors of the ALDH1A1 protein against AML.


Assuntos
Aldeído Desidrogenase , Leucemia Mieloide Aguda , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , RNA/metabolismo , Retinal Desidrogenase/genética
9.
Commun Biol ; 3(1): 720, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247183

RESUMO

Immunotherapies targeting the PD-1/PD-L1 axis are now a mainstay in the clinical management of multiple cancer types, however, many tumors still fail to respond. CCL2 is highly expressed in various cancer types and has been shown to be associated with poor prognosis. Inhibition or blockade of the CCL2/CCR2 signaling axis has thus been an area of interest for cancer therapy. Here we show across multiple murine tumor and metastasis models that CCR2 antagonism in combination with anti-PD-1 therapy leads to sensitization and enhanced tumor response over anti-PD-1 monotherapy. We show that enhanced treatment response correlates with enhanced CD8+ T cell recruitment and activation and a concomitant decrease in CD4+ regulatory T cell. These results provide strong preclinical rationale for further clinical exploration of combining CCR2 antagonism with PD-1/PD-L1-directed immunotherapies across multiple tumor types especially given the availability of small molecule CCR2 inhibitors and antibodies.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/terapia , Receptores CCR2/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Feminino , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , RNA-Seq , Neoplasias da Bexiga Urinária/terapia
10.
Carcinogenesis ; 40(1): 194-201, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30403777

RESUMO

Amylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/fisiologia , Neoplasias da Bexiga Urinária/etiologia , Animais , Butilidroxibutilnitrosamina , Engenharia Genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA
11.
Clin Cancer Res ; 24(17): 4137-4144, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760223

RESUMO

Purpose: Tumor heterogeneity may represent a barrier to preoperative genomic characterization by needle biopsy in clear cell renal cell carcinoma (ccRCC). The extent of heterogeneity in small renal tumors remains unknown. Therefore, we set out to evaluate heterogeneity in resected large and small renal tumors.Experimental Design: We conducted a study from 2013 to 2016 that evaluated 47 consecutive ccRCC tumors resected during radical or partial nephrectomy. Cases were designated as small (<4 cm) and large (>7 cm) tumors. Each tumor had three regions sampled. Copy-number variation (CNV) was assessed and gene expression analysis was performed to characterize the clear-cell A and B (ccA/ccB) profile and the cell-cycle progression (CCP) score. Genomic heterogeneity between three regions was evaluated using CNV subclonal events, regional expression profiles, and correlation between gene expression.Results: Twenty-three small and 24 large tumors were analyzed. Total CNVs and subclonal CNVs events were less frequent in small tumors (P < 0.001). Significant gene expression heterogeneity was observed for both CCP scores and ccA/ccB classifications. Larger tumors had more variance in CCP scores (P = 0.026). The distribution of ccA/ccB differed between small and large tumors with mixed ccA/ccB tumors occurring more frequently in the larger tumors (P = 0.024). Analysis of five mixed tumors (with both ccA/ccB regions) demonstrated the more aggressive ccB phenotype had greater CNV events (P = 0.014).Conclusions: Small renal tumors have much less genomic complexity and fewer subclonal events. Pretreatment genomic characterization with single-needle biopsy in small tumors may be useful to assess biologic potential and may influence therapy. Clin Cancer Res; 24(17); 4137-44. ©2018 AACR.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA/genética , Heterogeneidade Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Ciclo Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Nefrectomia
13.
Mol Cancer Res ; 16(1): 69-77, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970362

RESUMO

Urothelial carcinoma accounts for most of the bladder cancer cases. Using next-generation sequencing (NGS) technology, we found that a significant percentage (83%) of tumors had mutations in chromatin-remodeling genes. Here, we examined the functional relevance of mutations in two chromatin-remodeling genes, EP300 and its paralog, CREBBP, which are mutated in almost one-third of patients. Interestingly, almost half of missense mutations cluster in the histone-acetyltransferase (HAT) domain of EP300/CREBBP. This domain catalyzes the transfer of an acetyl group to target molecules such as histones, thereby regulating chromatin dynamics. Thus, patients with EP300 or CREBBP mutations may have alterations in the ability of the corresponding proteins to modify histone proteins and control transcriptional profiles. In fact, it was determined that many of the missense HAT mutations in EP300 (64%) and CREBBP (78%) were HAT-inactivating. These inactivating mutations also correlated with invasive disease in patients. Strikingly, the prediction software Mutation Assessor accurately predicted the functional consequences of each HAT missense mutation. Finally, a gene expression signature was developed that associated with loss of HAT activity and that this signature was associated with more aggressive cancer in four patient datasets. Further supporting the notion that this score accurately reflects HAT activity, we found it is responsive to treatment of cancer cells to mocetinostat, a histone deacetylase (HDAC) inhibitor.Implication: This study provides a rationale for targeted sequencing of EP300 and CREBBP and use of a gene profiling signature for predicting therapeutic response in patients. Mol Cancer Res; 16(1); 69-77. ©2017 AACR.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Humanos , Mutação de Sentido Incorreto , Neoplasias da Bexiga Urinária/patologia
14.
Cancer Res ; 77(18): 4858-4867, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28674079

RESUMO

Elevated tumor expression of the cell surface GPI-linked CD24 protein signals poor patient prognosis in many tumor types. However, some cancer cells selected to be negative for surface CD24 (surCD24-) still retain aggressive phenotypes in vitro and in vivo Here, we resolve this apparent paradox with the discovery of biologically active, nuclear CD24 (nucCD24) and finding that its levels are unchanged in surCD24- cells. Using the complementary techniques of biochemical cellular fractionation and immunofluorescence, we demonstrate a signal for CD24 in the nucleus in cells from various histologic types of cancer. Nuclear-specific expression of CD24 (NLS-CD24) increased anchorage-independent growth in vitro and tumor formation in vivo Immunohistochemistry of patient tumor samples revealed the presence of nucCD24, whose signal intensity correlated positively with the presence of metastatic disease. Analysis of gene expression between cells expressing CD24 and NLS-CD24 revealed a unique nucCD24 transcriptional signature. The median score derived from this signature was able to stratify overall survival in four patient datasets from bladder cancer and five patient datasets from colorectal cancer. Patients with high scores (more nucCD24-like) had reduced survival. These findings define a novel and functionally important intracellular location of CD24; they explain why surCD24- cells can remain aggressive, and they highlight the need to consider nucCD24 in both fundamental research and therapeutic development. Cancer Res; 77(18); 4858-67. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Cell ; 30(3): 432-443, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27593345

RESUMO

RhoGDI2 specifically suppresses bladder cancer metastasis but not primary tumor growth, which involves tumor-associated macrophages. We report that macrophage-secreted osteopontin binds to CD44s on the tumor cells and promotes invasion and clonal growth. These effects are RhoGDI2-sensitive and require CD44s binding to the Rac GEF TIAM1. Osteopontin expression correlates with tumor aggressiveness and poor clinical outcome in patients. Inhibiting this pathway potently blocked lung and lymph node metastasis; however, primary tumors and established metastasis were less sensitive. Osteopontin-CD44s-TIAM1 promotes clonal growth in vitro but not at high cell density. These data identify osteopontin-CD44-TIAM1-Rac1 axis as a RhoGDI2-sensitive pathway and potential therapeutic target in bladder cancer metastasis. They also elucidate the mechanism behind RhoGDI2 specificity for metastasis over established tumors.


Assuntos
Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/secundário , Osteopontina/metabolismo , Neoplasias da Bexiga Urinária/patologia , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias da Bexiga Urinária/metabolismo
16.
Bioinformatics ; 32(23): 3679-3681, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27503226

RESUMO

The Gene Expression Omnibus (GEO) is a public repository of gene expression data. Although GEO has its own tool, GEO2R, for data analysis, evaluation of single genes is not straightforward and survival analysis in specific GEO datasets is not possible without bioinformatics expertise. We describe a web application, shinyGEO, that allows a user to download gene expression data sets directly from GEO in order to perform differential expression and survival analysis for a gene of interest. In addition, shinyGEO supports customized graphics, sample selection, data export and R code generation so that all analyses are reproducible. The availability of shinyGEO makes GEO datasets more accessible to non-bioinformaticians, promising to lead to better understanding of biological processes and genetic diseases such as cancer. AVAILABILITY AND IMPLEMENTATION: Web application and source code are available from http://gdancik.github.io/shinyGEO/ CONTACT: dancikg@easternct.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica , Internet , Gráficos por Computador , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
17.
Cancer Res ; 76(17): 5175-85, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312530

RESUMO

In principle, the inhibition of candidate gain-of-function genes defined through genomic analyses of large patient cohorts offers an attractive therapeutic strategy. In this study, we focused on changes in expression of CD24, a well-validated clinical biomarker of poor prognosis and a driver of tumor growth and metastasis, as a benchmark to assess functional relevance. Through this approach, we identified GON4L as a regulator of CD24 from screening a pooled shRNA library of 176 candidate gain-of-function genes. GON4L depletion reduced CD24 expression in human bladder cancer cells and blocked cell proliferation in vitro and tumor xenograft growth in vivo Mechanistically, GON4L interacted with transcription factor YY1, promoting its association with the androgen receptor to drive CD24 expression and cell growth. In clinical bladder cancer specimens, expression of GON4L, YY1, and CD24 was elevated compared with normal bladder urothelium. This pathway is biologically relevant in other cancer types as well, where CD24 and the androgen receptor are clinically prognostic, given that silencing of GON4L and YY1 suppressed CD24 expression and growth of human lung, prostate, and breast cancer cells. Overall, our results define GON4L as a novel driver of cancer growth, offering new biomarker and therapeutic opportunities. Cancer Res; 76(17); 5175-85. ©2016 AACR.


Assuntos
Antígeno CD24/metabolismo , Carcinoma de Células de Transição/patologia , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/patologia , Fator de Transcrição YY1/metabolismo , Animais , Western Blotting , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas Correpressoras , Proteínas de Ligação a DNA , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Neoplasias da Bexiga Urinária/metabolismo
18.
BMC Urol ; 15: 59, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126604

RESUMO

BACKGROUND: In the past ~15 years, the identification of diagnostic and prognostic biomarkers from gene expression data has increased our understanding of cancer biology and has led to advances in the personalized treatment of many cancers. A diagnostic biomarker is indicative of tumor status such as tumor stage, while a prognostic biomarker is indicative of disease outcome. Despite these advances, however, there are no clinically approved biomarkers for the treatment of bladder cancer, which is the fourth most common cancer in males in the United States and one of the most expensive cancers to treat. Although gene expression profiles of bladder cancer patients are publicly available, biomarker identification requires bioinformatics expertise that is not available to many research laboratories. DESCRIPTION: We collected gene expression data from 13 publicly available patient cohorts (N = 1454) and developed BC-BET, an online Bladder Cancer Biomarker Evaluation Tool for evaluating candidate diagnostic and prognostic gene expression biomarkers in bladder cancer. A user simply selects a gene, and BC-BET evaluates the utility of that gene's expression as a diagnostic and prognostic biomarker. Specifically, BC-BET calculates how strongly a gene's expression is associated with tumor presence (distinguishing tumor from normal samples), tumor grade (distinguishing low- from high-grade tumors), tumor stage (distinguishing non-muscle invasive from muscle invasive samples), and patient outcome (e.g., disease-specific survival) across all patients in each cohort. Patients with low-grade, non-muscle invasive tumors and patients with high-grade, muscle invasive tumors are also analyzed separately in order to evaluate whether the biomarker of interest has prognostic value independent of grade and stage. CONCLUSION: Although bladder cancer gene expression datasets are publicly available, their analysis is computationally intensive and requires bioinformatics expertise. BC-BET is an easy-to-use tool for rapidly evaluating bladder cancer gene expression biomarkers across multiple patient cohorts.


Assuntos
Biomarcadores Tumorais/metabolismo , Diagnóstico por Computador/métodos , Perfilação da Expressão Gênica/métodos , Software , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo , Algoritmos , Bases de Dados Genéticas , Humanos , Sistemas On-Line , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Interface Usuário-Computador
19.
Mol Cancer Res ; 13(9): 1306-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26078295

RESUMO

UNLABELLED: Next-generation sequencing (NGS) of human bladder cancer has revealed many gene alterations compared with normal tissue, with most being predicted to be "loss of function." However, given the high number of alterations, evaluating the functional impact of each is impractical. Here, we develop and use a high-throughput, in vivo strategy to determine which alterations are loss of function in tumor growth suppressors. Genes reported as altered by NGS in bladder cancer patients were bioinformatically processed by MutationTaster and MutationAssessor, with 283 predicted as loss of function. An shRNA lentiviral library targeting these genes was transduced into T24 cells, a nontumorigenic human bladder cancer cell line, followed by injection into mice. Tumors that arose were sequenced and the dominant shRNA constructs were found to target IQGAP1, SAMD9L, PCIF1, MED1, and KATNAL1 genes. In vitro validation experiments revealed that shRNA molecules directed at IQGAP1 showed the most profound increase in anchorage-independent growth of T24 cells. The clinical relevance of IQGAP1 as a tumor growth suppressor is supported by the finding that its expression is lower in bladder cancer compared with benign patient urothelium in multiple independent datasets. Lower IQGAP1 protein expression associated with higher tumor grade and decreased patient survival. Finally, depletion of IQGAP1 leads to increased TGFBR2 with TGFß signaling, explaining in part how reduced IQGAP1 promotes tumor growth. These findings suggest IQGAP1 is a bladder tumor growth suppressor that works via modulating TGFß signaling and is a potentially clinically useful biomarker. IMPLICATIONS: This study used gene mutation information from patient-derived bladder tumor specimens to inform the development of a screen used to identify novel tumor growth suppressors. This included identification of the protein IQGAP1 as a potent bladder cancer growth suppressor.


Assuntos
Genes Supressores de Tumor , Testes Genéticos/métodos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Neoplasias da Bexiga Urinária/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Computadores Moleculares , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Invasividade Neoplásica , Prognóstico , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo , Proteínas Ativadoras de ras GTPase/genética
20.
Science ; 347(6225): 1006-10, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722414

RESUMO

Reactivation of telomerase, the chromosome end-replicating enzyme, drives human cell immortality and cancer. Point mutations in the telomerase reverse transcriptase (TERT) gene promoter occur at high frequency in multiple cancers, including urothelial cancer (UC), but their effect on telomerase function has been unclear. In a study of 23 human UC cell lines, we show that these promoter mutations correlate with higher levels of TERT messenger RNA (mRNA), TERT protein, telomerase enzymatic activity, and telomere length. Although previous studies found no relation between TERT promoter mutations and UC patient outcome, we find that elevated TERT mRNA expression strongly correlates with reduced disease-specific survival in two independent UC patient cohorts (n = 35; n = 87). These results suggest that high telomerase activity may be a better marker of aggressive UC tumors than TERT promoter mutations alone.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Mutação Puntual , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/patologia , Urotélio/enzimologia , Urotélio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...