Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Rep ; 14(1): 9998, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693196

RESUMO

It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. From a cohort of 4-7 month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In order of relative abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. In comparison to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Pulmão , Macaca mulatta , Microbiota , Boca , RNA Ribossômico 16S , Animais , Macaca mulatta/microbiologia , Pulmão/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Boca/microbiologia , RNA Ribossômico 16S/genética , Masculino , Modelos Animais de Doenças
2.
Res Sq ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609264

RESUMO

Background: It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. Results: From a cohort of 4-7-month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In relative order of abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. Relative to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. Conclusions: We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.

3.
J Immunol ; 211(3): 443-452, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314415

RESUMO

"Adaptive" NK cells, characterized by FcRγ deficiency and enhanced responsiveness to Ab-bound, virus-infected cells, have been found in certain hCMV-seropositive individuals. Because humans are exposed to numerous microbes and environmental agents, specific relationships between hCMV and FcRγ-deficient NK cells (also known as g-NK cells) have been challenging to define. Here, we show that a subgroup of rhesus CMV (RhCMV)-seropositive macaques possesses FcRγ-deficient NK cells that stably persist and display a phenotype resembling human FcRγ-deficient NK cells. Moreover, these macaque NK cells resembled human FcRγ-deficient NK cells with respect to functional characteristics, including enhanced responsiveness to RhCMV-infected target in an Ab-dependent manner and hyporesponsiveness to tumor and cytokine stimulation. These cells were not detected in specific pathogen-free (SPF) macaques free of RhCMV and six other viruses; however, experimental infection of SPF animals with RhCMV strain UCD59, but not RhCMV strain 68-1 or SIV, led to induction of FcRγ-deficient NK cells. In non-SPF macaques, coinfection by RhCMV with other common viruses was associated with higher frequencies of FcRγ-deficient NK cells. These results support a causal role for specific CMV strain(s) in the induction of FcRγ-deficient NK cells and suggest that coinfection by other viruses further expands this memory-like NK cell pool.


Assuntos
Coinfecção , Infecções por Citomegalovirus , Viroses , Animais , Humanos , Citomegalovirus/genética , Macaca mulatta , Células Matadoras Naturais
4.
Bioeng Transl Med ; 8(3): e10508, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206248

RESUMO

We have developed a serology test platform for identifying individuals with prior exposure to specific viral infections and provide data to help reduce public health risks. The serology test composed of a pair of cell lines engineered to express either a viral envelop protein (Target Cell) or a receptor to recognize the Fc region of an antibody (Reporter Cell), that is, Diagnostic-Cell-Complex (DxCell-Complex). The formation of an immune synapse, facilitated by the analyte antibody, resulted into a dual-reporter protein expression by the Reporter Cell. We validated it with human serum with confirmed history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. No signal amplification steps were necessary. The DxCell-Complex quantitatively detected the target-specific immunoglobulin G (IgG) within 1 h. Validation with clinical human serum containing SARS-CoV-2 IgG antibodies confirmed 97.04% sensitivity and 93.33% specificity. The platform can be redirected against other antibodies. Self-replication and activation-induced cell signaling, two attributes of the cell, will enable rapid and cost-effective manufacturing and its operation in healthcare facilities without requiring time-consuming signal amplification steps.

5.
J Fungi (Basel) ; 9(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36983473

RESUMO

Liver disease causes relative compromise of the host immune system through multiple overlapping mechanisms and is an established risk factor for invasive fungal diseases including candidiasis and cryptococcosis. This immunologic derangement also leads to rapid progression of disease with resultant increases in morbidity and mortality. We describe severe coccidioidomycosis cases in the setting of liver dysfunction. Collaborative multi-center epidemiologic studies should be performed to determine the incidence of severe coccidioidomycosis in patients with concurrent liver disease.

6.
iScience ; 26(1): 105743, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590168

RESUMO

HIV reservoirs are extremely stable and pose a tremendous challenge to clear HIV infection. Here, we demonstrate that activation of ISR/ATF4 signaling reverses HIV latency, which also selectively eliminates HIV+ cells in primary CD4+T cell model of latency without effect on HIV-negative CD4+T cells. The reduction of HIV+ cells is associated with apoptosis enhancement, but surprisingly is largely seen in HIV-infected cells in which gag-pol RNA transcripts are detected in HIV RNA-induced ATF4/IFIT signaling. In resting CD4+ (rCD4+) T cells isolated from people living with HIV on antiretroviral therapy, induction of ISR/ATF4 signaling reduced HIV reservoirs by depletion of replication-competent HIV without global reduction in the rCD4+ T cell population. These findings suggest that compromised ISR/ATF4 signaling maintains stable and quiescent HIV reservoirs whereas activation of ISR/ATF4 signaling results in the disruption of latent HIV and clearance of persistently infected CD4+T cells.

7.
Microbiol Spectr ; 10(4): e0073122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35852348

RESUMO

We have engineered a cell that can be used for diagnosing active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Isolation of individuals with active infections offers an effective solution for mitigating pandemics. However, the implementation of this practice requires robust infrastructure for rapid and intuitive testing, which is currently missing in our communities. To address this need, we engineered a fast-growing cell line into a cell-based antigen test platform for emerging viruses, i.e., DxCell, that can be rapidly deployed in decentralized health care facilities for continuous testing. The technology was characterized using cells engineered to present spike glycoprotein of SARS-CoV-2 (SARS-CoV-2-Sgp-cells) and Calu-3 host cells infected with competent SARS-CoV-2. Preclinical validation was conducted by directly incubating the DxCell with oropharyngeal swabs from mice infected with SARS-CoV-2. No sample preparation steps are necessary. The DxCell quantitatively detected the SARS-CoV-2-Sgp-cells within 1 h (P < 0.02). Reporter signal was proportional to the number of SARS-CoV-2-Sgp-cells, which represents the infection burden. The SARS-CoV-2 DxCell antigen test was benchmarked against quantitative PCR (qPCR) test and accurately differentiated between infected (n = 8) and control samples (n = 3) (P < 0.05). To demonstrate the broad applicability of the platform, we successfully redirected its specificity and tested its sensing function with cells engineered to present antigens from other viruses. In conclusion, we have developed an antigen test platform that capitalizes on the two innate functions of the cell, self-replication and activation-induced cell signaling. These provide the DxCell key advantages over existing technologies, e.g., label-free testing without sample processing, and will facilitate its implementation in decentralized health care facilities. IMPORTANCE Pandemic mitigation requires continuous testing of symptomatic or asymptomatic individuals with rapid turnaround time, and lack of this capability in our community has prolonged pandemic duration leading to obliteration of world economies. The DxCell platform is a cell-based self-replicative antigen test that detects molecular signatures of the target pathogen and can be distributed in small quantities to testing facilities for expansion on site to the desired volume. In this work, we directed this platform to target SARS-CoV-2. Unlike the PCR detection of viral mRNA that requires trained personnel, the DxCell does not require any sample preparation or signal amplification step and introduces an opportunity for a decentralized testing network.


Assuntos
COVID-19 , Animais , COVID-19/diagnóstico , Teste para COVID-19 , Camundongos , Pandemias , SARS-CoV-2/genética , Manejo de Espécimes
8.
Front Microbiol ; 13: 879152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495669

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of the COVID-19 pandemic, is initiated by its binding to the ACE2 receptor and other co-receptors on mucosal epithelial cells. Variable outcomes of the infection and disease severity can be influenced by pre-existing risk factors. Human immunodeficiency virus (HIV), the cause of AIDS, targets the gut mucosal immune system and impairs epithelial barriers and mucosal immunity. We sought to determine the impact and mechanisms of pre-existing HIV infection increasing mucosal vulnerability to SARS-CoV-2 infection and disease. We investigated changes in the expression of ACE2 and other SARS-CoV-2 receptors and related pathways in virally inflamed gut by using the SIV infected rhesus macaque model of HIV/AIDS. Immunohistochemical analysis showed sustained/enhanced ACE2 expression in the gut epithelium of SIV infected animals compared to uninfected controls. Gut mucosal transcriptomic analysis demonstrated enhanced expression of host factors that support SARS-CoV-2 entry, replication, and infection. Metabolomic analysis of gut luminal contents revealed the impact of SIV infection as demonstrated by impaired mitochondrial function and decreased immune response, which render the host more vulnerable to other pathogens. In summary, SIV infection resulted in sustained or increased ACE2 expression in an inflamed and immune-impaired gut mucosal microenvironment. Collectively, these mucosal changes increase the susceptibility to SARS-CoV-2 infection and disease severity and result in ineffective viral clearance. Our study highlights the use of the SIV model of AIDS to fill the knowledge gap of the enteric mechanisms of co-infections as risk factors for poor disease outcomes, generation of new viral variants and immune escape in COVID-19.

9.
Front Microbiol ; 13: 836831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359743

RESUMO

Human Immunodeficiency Virus-1 (HIV) remains a global health challenge due to the latent HIV reservoirs in people living with HIV (PLWH). Dormant yet replication competent HIV harbored in the resting CD4+ T cells cannot be purged by antiretroviral therapy (ART) alone. One approach of HIV cure is the "Kick and Kill" strategy where latency reversal agents (LRAs) have been implemented to disrupt latent HIV, expecting to eradicate HIV reservoirs by viral cytopathic effect or immune-mediated clearance. Protein Kinase C agonists (PKCa), a family of LRAs, have demonstrated the ability to disrupt latent HIV to an extent. However, the toxicity of PKCa remains a concern in vivo. Early growth response protein 1 (EGR1) is a downstream target of PKCa during latency reversal. Here, we show that PKCa induces EGR1 which directly drives Tat-dependent HIV transcription. Resveratrol, a natural phytoalexin found in grapes and various plants, induces Egr1 expression and disrupts latent HIV in several HIV latency models in vitro and in CD4+ T cells isolated from ART-suppressed PLWH ex vivo. In the primary CD4+ T cells, resveratrol does not induce immune activation at the dosage that it reverses latency, indicating that targeting EGR1 may be able to reverse latency and bypass PKCa-induced immune activation.

10.
Open Forum Infect Dis ; 9(3): ofab543, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252466

RESUMO

To assess sex-specific differences in coccidioidomycosis, a retrospective analysis of human patients, nonhuman primates, and veterinary patients (including the neutered status of the animal) was performed. We found higher rates of infection and severity in males. This observed increased infection risk suggests deeper biological underpinnings than solely occupational/exposure risks.

11.
AIDS Res Hum Retroviruses ; 38(3): 173-180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969255

RESUMO

In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.


Assuntos
Infecções por HIV , Microbiota , Comorbidade , Infecções por HIV/prevenção & controle , Humanos , Microbiota/fisiologia
12.
J Breath Res ; 16(1)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34852327

RESUMO

Exhaled breath condensate (EBC) is routinely collected and analyzed in breath research. Because it contains aerosol droplets, EBC samples from SARS-CoV-2 infected individuals harbor the virus and pose the threat of infectious exposure. We report for the first time a safe and consistent method to fully inactivate SARS-CoV-2 in EBC samples and make EBC samples safe for processing and analysis. EBC samples containing infectious SARS-CoV-2 were treated with several concentrations of acetonitrile. The most commonly used 10% acetonitrile treatment for EBC processing failed to completely inactivate the virus in samples and viable virus was detected by the assay of SARS-CoV-2 infection of Vero E6 cells in a biosafety level 3 laboratory. Treatment with either 50% or 90% acetonitrile was effective to completely inactivate the virus, resulting in safe, non-infectious EBC samples that can be used for metabolomic analysis. Our study provides SARS-CoV-2 inactivation protocol for the collection and processing of EBC samples in the clinical setting and for advancing to metabolic assessments in health and disease.


Assuntos
COVID-19 , SARS-CoV-2 , Testes Respiratórios , Expiração , Humanos , Metabolômica
13.
Sci Rep ; 11(1): 13454, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188162

RESUMO

Diabetes mellitus (DM) is associated with a dysfunctional intestinal barrier and an increased risk for systemic infection and inflammation in people, though the pathogenic mechanisms leading to this are poorly understood. Using a canine model of DM, we showed that the peroxisomal proliferator-activated receptor-α agonist fenofibrate modulates plasma lipid profiles and markers of intestinal barrier function. A 3-week course of fenofibrate reduced fasting interstitial glucose and inflammatory cytokine IL-8 and TNF-α concentrations, which correlated with reduced triglyceride levels. The lipidomic profile exhibited significantly lower levels of triacylglycerols, phosphatidylethanolamines, diacylglycerols, and ceramides following fenofibrate administration. On histopathological analysis, we observed an aberrant amount of intraepithelial CD3+ T lymphocytes (IEL) in the small intestine of dogs with spontaneous and induced-DM. Fenofibrate reduced IEL density in the duodenum of dogs with DM and enhanced markers of intestinal barrier function in vivo and in vitro. There were minimal changes in the intestinal microbial composition following fenofibrate administration, suggesting that repair of intestinal barriers can be achieved independently of the resident microbiota. Our findings indicate that lipid metabolism is critical to functionality of the intestinal epithelium, which can be rescued by PPARα activation in dogs with DM.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fenofibrato/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , PPAR alfa/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Cães , Interleucina-8/metabolismo , Masculino , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS One ; 16(6): e0253578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166421

RESUMO

RATIONALE: There is little doubt that aerosols play a major role in the transmission of SARS-CoV-2. The significance of the presence and infectivity of this virus on environmental surfaces, especially in a hospital setting, remains less clear. OBJECTIVES: We aimed to analyze surface swabs for SARS-CoV-2 RNA and infectivity, and to determine their suitability for sequence analysis. METHODS: Samples were collected during two waves of COVID-19 at the University of California, Davis Medical Center, in COVID-19 patient serving and staff congregation areas. qRT-PCR positive samples were investigated in Vero cell cultures for cytopathic effects and phylogenetically assessed by whole genome sequencing. MEASUREMENTS AND MAIN RESULTS: Improved cleaning and patient management practices between April and August 2020 were associated with a substantial reduction of SARS-CoV-2 qRT-PCR positivity (from 11% to 2%) in hospital surface samples. Even though we recovered near-complete genome sequences in some, none of the positive samples (11 of 224 total) caused cytopathic effects in cultured cells suggesting this nucleic acid was either not associated with intact virions, or they were present in insufficient numbers for infectivity. Phylogenetic analysis suggested that the SARS-CoV-2 genomes of the positive samples were derived from hospitalized patients. Genomic sequences isolated from qRT-PCR negative samples indicate a superior sensitivity of viral detection by sequencing. CONCLUSIONS: This study confirms the low likelihood that SARS-CoV-2 contamination on hospital surfaces contains infectious virus, disputing the importance of fomites in COVID-19 transmission. Ours is the first report on recovering near-complete SARS-CoV-2 genome sequences directly from environmental surface swabs.


Assuntos
COVID-19/genética , Genoma Viral , Hospitais de Ensino , Filogenia , SARS-CoV-2/genética , Análise de Sequência de RNA , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Chlorocebus aethiops , Humanos , SARS-CoV-2/isolamento & purificação , Células Vero
15.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34014838

RESUMO

Although antiretroviral therapy suppresses HIV replication, it does not eliminate viral reservoirs or restore damaged lymphoid tissue, posing obstacles to HIV eradication. Using the SIV model of AIDS, we investigated the effect of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression and determined associated molecular/metabolic signatures. MSC administration to SIV-infected macaques resulted in viral reduction and heightened virus-specific responses. Marked clearance of SIV-positive cells from gut mucosal effector sites was correlated with robust regeneration of germinal centers, restoration of follicular B cells and T follicular helper (Tfh) cells, and enhanced antigen presentation by viral trapping within the follicular DC network. Gut transcriptomic analyses showed increased antiviral response mediated by pathways of type I/II IFN signaling, viral restriction factors, innate immunity, and B cell proliferation and provided the molecular signature underlying enhanced host immunity. Metabolic analysis revealed strong correlations between B and Tfh cell activation, anti-SIV antibodies, and IL-7 expression with enriched retinol metabolism, which facilitates gut homing of antigen-activated lymphocytes. We identified potentially new MSC functions in modulating antiviral immunity for enhanced viral clearance predominantly through type I/II IFN signaling and B cell signature, providing a road map for multipronged HIV eradication strategies.


Assuntos
Centro Germinativo , Mucosa Intestinal/imunologia , Células-Tronco Mesenquimais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Citocinas/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral/imunologia , Macaca mulatta , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia
16.
J Invest Dermatol ; 141(7): 1780-1791, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33485880

RESUMO

We previously showed that exposure to a high-sugar and moderate-fat diet (i.e., Western diet [WD]) in mice induces appreciable skin inflammation and enhances the susceptibility to imiquimod-induced psoriasiform dermatitis, suggesting that dietary components may render the skin susceptible to psoriatic inflammation. In this study, utilizing an IL-23 minicircle-based model with features of both psoriasiform dermatitis and psoriatic arthritis, we showed that intake of WD for 10 weeks predisposed mice not only to skin but also to joint inflammation. Both WD-induced skin and joint injuries were associated with an expansion of IL-17A‒producing γδ T cells and increased expression of T helper type 17 cytokines. After IL-23 minicircle delivery, WD-fed mice had reduced microbial diversity and pronounced dysbiosis. Treatment with broad-spectrum antibiotics suppressed IL-23‒mediated skin and joint inflammation in the WD-fed mice. Strikingly, reduced skin and joint inflammation with a partial reversion of the gut microbiota were noted when mice switched from a WD to a standard diet after IL-23 minicircle delivery. These findings reveal that a short-term WD intake‒induced dysbiosis is accompanied by enhanced psoriasis-like skin and joint inflammation. Modifications toward a healthier dietary pattern should be considered in patients with psoriatic skin and/or joint disease.


Assuntos
Artrite Psoriásica/imunologia , Dieta Ocidental/efeitos adversos , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Psoríase/imunologia , Animais , Artrite Psoriásica/microbiologia , Artrite Psoriásica/prevenção & controle , Modelos Animais de Doenças , Disbiose/microbiologia , Humanos , Imiquimode/administração & dosagem , Imiquimode/imunologia , Interleucina-23/metabolismo , Camundongos , Psoríase/microbiologia , Psoríase/prevenção & controle , Transdução de Sinais/imunologia
17.
J Int AIDS Soc ; 23(10): e25628, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33073530

RESUMO

INTRODUCTION: The majority of new HIV infections occur through mucosal transmission. The availability of readily applicable and accessible platforms for anti-retroviral (ARV) delivery is critical for the prevention of HIV acquisition through sexual transmission in both women and men. There is a compelling need for developing new topical delivery systems that have advantages over the pills, gels and rings, which currently fail to guarantee protection against mucosal viral transmission in vulnerable populations due to lack of user compliance. The silk fibroin (SF) platform offers another option that may be better suited to individual circumstances and preferences to increase efficacy through user compliance. The objective of this study was to test safety and efficacy of SF for anti-HIV drug delivery to mucosal sites and for viral prevention. METHODS: We formulated a potent HIV inhibitor Griffithsin (Grft) in a mucoadhesive silk fibroin (SF) drug delivery platform and tested the application in a non-human primate model in vivo and a pre-clinical human cervical and colorectal tissue explant model. Both vaginal and rectal compartments were assessed in rhesus macaques (Mucaca mulatta) that received SF (n = 4), no SF (n = 7) and SF-Grft (n = 11). In this study, we evaluated the composition of local microbiota, inflammatory cytokine production, histopathological changes in the vaginal and rectal compartments and mucosal protection after ex vivo SHIV challenge. RESULTS: Effective Grft release and retention in mucosal tissues from the SF-Grft platform resulted in protection against HIV in human cervical and colorectal tissue as well as against SHIV challenge in both rhesus macaque vaginal and rectal tissues. Mucoadhesion of SF-Grft inserts did not cause any inflammatory responses or changes in local microbiota. CONCLUSIONS: We demonstrated that in vivo delivery of SF-Grft in rhesus macaques fully protects against SHIV challenge ex vivo after two hours of application and is safe to use in both the vaginal and rectal compartments. Our study provides support for the development of silk fibroin as a highly promising, user-friendly HIV prevention modality to address the global disparity in HIV infection.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Fibroínas , Infecções por HIV/prevenção & controle , Lectinas/administração & dosagem , Lectinas de Plantas/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Fármacos Anti-HIV/análise , Fármacos Anti-HIV/farmacocinética , Materiais Biocompatíveis , Colo do Útero/virologia , Colo/virologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , HIV/efeitos dos fármacos , Humanos , Lectinas/análise , Lectinas/farmacocinética , Macaca mulatta , Microbiota/efeitos dos fármacos , Mucosa/química , Veículos Farmacêuticos , Lectinas de Plantas/análise , Lectinas de Plantas/farmacocinética , Reto/química , Reto/microbiologia , Reto/virologia , Vagina/química , Vagina/microbiologia
18.
AIDS Res Hum Retroviruses ; 36(11): 886-895, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32777940

RESUMO

In October of 2019, researchers and community members from around the world met at the NIH for the fifth annual International Workshop on Microbiome in HIV. New research was presented on the role of the microbiome on chronic inflammation and vaccine design, interactions of genetics, environment, sexual practice and HIV infection with the microbiome and the development and clinical trials of microbiome-based therapeutic approaches intended to decrease the probability of HIV acquisition/transmission or ameliorate sequelae of HIV. The keynote address by Dr. Jacques Ravel focused on his work on the vaginal microbiome and efforts to improve the analysis and resolution of microbiome data.


Assuntos
Pesquisa Biomédica , Infecções por HIV , Microbiota , Escolaridade , Feminino , Infecções por HIV/prevenção & controle , Humanos , Vagina
19.
AIDS Res Hum Retroviruses ; 36(5): 349-356, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31914785

RESUMO

Each year, a growing international collection of researchers meets at the NIH to share and discuss developments in the microbiome HIV story. This past year has seen continued progress toward a detailed understanding of host-microbe interactions both within and outside the field of HIV. Commensal microbes are being linked to an ever-growing list of maladies and physiologic states, including major depressive disorder, chronic kidney disease, and Parkinson disease. PubMed citations for "microbiome" are growing at an exponential rate with over 11,000 in 2018. Various microbial taxa have been associated with HIV infection, and some of these taxa associated with HIV infection have also been associated with systemic markers of inflammation in HIV infected individuals. Causality remains unclear however as environmental and behavioral factors may drive HIV risk, inflammation, and gut enterotype. Much of the work currently being done addresses potential mechanisms by which gut microbes influence immune and inflammatory pathways. No portion of the microbiome landscape has grown as rapidly as study of the interplay between gut microbes and response to cancer immunotherapy. As Dr. Wargo discussed in her keynote address, this area has opened the door to better understanding on how commensal microbes interact with the human immune system.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV/microbiologia , Virologia/educação , Translocação Bacteriana , Congressos como Assunto , Disbiose , Infecções por HIV/imunologia , Humanos , Simbiose
20.
Proc Natl Acad Sci U S A ; 116(49): 24819-24829, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740620

RESUMO

Chronic gut inflammatory diseases are associated with disruption of intestinal epithelial barriers and impaired mucosal immunity. HIV-1 (HIV) causes depletion of mucosal CD4+ T cells early in infection and disruption of gut epithelium, resulting in chronic inflammation and immunodeficiency. Although antiretroviral therapy (ART) is effective in suppressing viral replication, it is incapable of restoring the "leaky gut," which poses an impediment for HIV cure efforts. Strategies are needed for rapid repair of the epithelium to protect intestinal microenvironments and immunity in inflamed gut. Using an in vivo nonhuman primate intestinal loop model of HIV/AIDS, we identified the pathogenic mechanism underlying sustained disruption of gut epithelium and explored rapid repair of gut epithelium at the intersection of microbial metabolism. Molecular, immunological, and metabolomic analyses revealed marked loss of peroxisomal proliferator-activated receptor-α (PPARα) signaling, predominant impairment of mitochondrial function, and epithelial disruption both in vivo and in vitro. To elucidate pathways regulating intestinal epithelial integrity, we introduced probiotic Lactobacillus plantarum into Simian immunodeficiency virus (SIV)-inflamed intestinal lumen. Rapid recovery of the epithelium occurred within 5 h of L. plantarum administration, independent of mucosal CD4+ T cell recovery, and in the absence of ART. This intestinal barrier repair was driven by L. plantarum-induced PPARα activation and restoration of mitochondrial structure and fatty acid ß-oxidation. Our data highlight the critical role of PPARα at the intersection between microbial metabolism and epithelial repair in virally inflamed gut and as a potential mitochondrial target for restoring gut barriers in other infectious or gut inflammatory diseases.


Assuntos
Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Mitocôndrias/metabolismo , PPAR alfa/metabolismo , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Epitélio/imunologia , Infecções por HIV , Humanos , Imunidade nas Mucosas , Interleucina-1beta/metabolismo , Intestinos/patologia , Lactobacillus plantarum/fisiologia , Macaca mulatta , Masculino , Metabolômica , Mitocôndrias/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...