Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 5(11): 1832-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21593799

RESUMO

Methanotrophs use methane (CH(4)) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH(4) oxidation in soil with afforestation or reforestation is poorly understood. Here, soil CH(4) oxidation was examined in New Zealand volcanic soils under regenerating native forests following burning, and in a mature native forest. Results were compared with data for pasture to pine land-use change at nearby sites. We show that following soil disturbance, as little as 47 years may be needed for development of a stable methanotrophic community similar to that in the undisturbed native forest soil. Corresponding soil CH(4)-oxidation rates in the regenerating forest soil have the potential to reach those of the mature forest, but climo-edaphic fators appear limiting. The observed changes in CH(4)-oxidation rate were directly linked to a prior shift in methanotrophic communities, which suggests microbial control of the terrestrial CH(4) flux and identifies the need to account for this response to afforestation and reforestation in global prediction of CH(4) emission.


Assuntos
Metano/metabolismo , Microbiologia do Solo , Mudança Climática , Nova Zelândia , Oxirredução , Solo/química , Árvores , Erupções Vulcânicas
2.
Ann Bot ; 98(4): 765-75, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16868003

RESUMO

BACKGROUND AND AIMS: Although density-specific stiffness, E/rho, (where E is Young's modulus and rho is wood density) is often assumed constant by the elastic similarity model, and in determination of critical buckling height (H(crit)), few studies have tested this assumption within species. Here this assumption is tested for Pinus radiata growing across an environmental gradient, and theory is combined with data to develop a model of Young's modulus. METHODS: Analyses use an extensive series of environmental plots covering the range of climatic and edaphic conditions over which P. radiata is grown in New Zealand. Reduced major axis regression was used to determine scaling exponents between log-log plots of H(crit) vs. groundline diameter (D), and E/rho vs. D. Path analysis was used to identify significant direct and indirect (through stem slenderness) edaphic and climatic influences on E. KEY RESULTS: Density-specific stiffness exhibited 3-fold variation. As E/rho scaled positively with D, the exponent of 0.95 between H(crit) and D exceeded the assumed value of 0.67 under constant E/rho. The final path analysis model included mean air temperature in early autumn (T(aut)) and slenderness as significant (P < 0.05) positive direct influences on E. Tree leaf area index and T(aut) were indirectly associated with E through their significant (P < 0.05) positive direct relationship with stem slenderness. Young's modulus was most sensitive to T(aut), followed by stem slenderness then leaf area index, and the final model explained 76 % of the variance in E. CONCLUSIONS: The findings suggest that within species E/rho variation may influence H(crit) and the scaling exponent between D and H(crit) so important in assumptions regarding allometric relationships. The model presented may provide a useful means of determining variation in E, E/rho and H(crit) across environmental gradients.


Assuntos
Ecossistema , Pinus/anatomia & histologia , Modelos Biológicos , Nova Zelândia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA