Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(1): e2300294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818700

RESUMO

The combination of single-cell RNA sequencing and microdissection techniques that preserves positional information has become a major tool for spatial transcriptome analyses. However, high costs and time requirements, especially for experiments at the single cell scale, make it challenging for this approach to meet the demand for increased throughput. Therefore, we proposed combinational DNA barcode (CDB)-seq as a medium-throughput, multiplexed approach combining Smart-3SEQ and CDB magnetic microbeads for transcriptome analyses of microdissected tissue samples. We conducted a comprehensive comparison of conditions for CDB microbead preparation and related factors and then applied CDB-seq to RNA extracts, fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) mouse brain tissue samples. CDB-seq transcriptomic profiles of tens of microdissected samples could be obtained in a simple, cost-effective way, providing a promising method for future spatial transcriptomics.


Assuntos
Anti-Infecciosos , Transcriptoma , Camundongos , Animais , Transcriptoma/genética , Microesferas , Código de Barras de DNA Taxonômico , Fixação de Tecidos/métodos , Perfilação da Expressão Gênica/métodos , DNA , Formaldeído
2.
Mil Med Res ; 10(1): 38, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592342

RESUMO

The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Biologia Computacional , Multiômica
3.
Anal Chim Acta ; 1281: 341861, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38783731

RESUMO

BACKGROUND: Paraformaldehyde (PFA) fixation is necessary for histochemical staining, and formalin-fixed and paraffin-embedded (FFPE) tissue archives are the largest repository of clinically annotated specimens. Single-cell gene expression workflows have recently been developed for PFA-fixed and FFPE tissue specimens. However, for tissues where intact cells are hard to recover, including tissues containing highly interconnected neurons, single-nuclear transcriptomics is beneficial. Moreover, since RNA is very unstable, the effects of standard pathological practice on the transcriptome of samples obtained from such archived specimens like FFPE samples are largely anecdotal. RESULTS: We evaluated the effects of polyformaldehyde (PFA) fixation and paraffin-embedding on transcriptional profiles of the mouse hippocampus obtained by RNA sequencing (RNA-seq). The transcriptomic signatures of nuclei isolated from fresh PFA-fixed and fresh FFPE tissues were comparable to those of cryopreserved samples. However, more differentially expressed genes were obtained for brains after PFA fixation for more than 3 days than in fresh PFA-fixed samples, especially genes involved in spliceosome and synaptic-related pathways. Importantly, the real cell states were destroyed, with oligodendrocyte precursor cells depleted in the 1day fixed hippocampus. After fixation for 3 days, the proportions of neuronal cells and oligodendrocytes decreased and microglia increased; however, relative frequencies remained constant for longer fixation durations. The storage time of FFPE samples had a negligible effect on the cell composition. SIGNIFICANCE: This represents the first work to investigate the effects of fixation and storage time of brains on its nuclear transcriptome signatures in detail. The fixation time had more influences on the nuclear transcriptomic profiles than FFPE retention time, and the cliff-like effects appeared to occur over a fixed period of 1-3 days. These findings are expected to guide sample preparation for single-nucleus RNA-seq of FFPE samples, particularly in transcriptomic studies focused on brain diseases.


Assuntos
Formaldeído , Perfilação da Expressão Gênica , Inclusão em Parafina , Fixação de Tecidos , Formaldeído/química , Animais , Camundongos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Encéfalo/metabolismo , Encéfalo/citologia , Transcriptoma , Polímeros/química , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/citologia , Masculino , Fixadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...