Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(1): 635, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38058216

RESUMO

Correction for 'Structural, electronic, optical, elastic, thermodynamic and thermal transport properties of Cs2AgInCl6 and Cs2AgSbCl6 double perovskite semiconductors using a first-principles study' by Keqing Zhang et al., Phys. Chem. Chem. Phys., 2023, 25, 31848-31868, https://doi.org/10.1039/d3cp03795a.

2.
Phys Chem Chem Phys ; 25(46): 31848-31868, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37968998

RESUMO

In this study, we employ the framework of first-principles density functional theory (DFT) computations to investigate the physical, electrical, bandgap and thermal conductivity of Cs2AgInCl6-CAIC (type I) and Cs2AgSbCl6-CASC (type II) using the GGA-PBE method. CAIC possesses a direct band gap energy of 1.812 eV, while CASC demonstrates an indirect band gap energy of 0.926 eV. The CAIC and CASC exhibit intriguingly reduced thermal conductivity, which can be attributed to the notable reduction in their respective Debye temperatures, measuring 182 K and 135 K, respectively. The Raman active modes computed under ambient conditions have been compared with real-world data, showing excellent agreement. The thermal conductivity values of CAIC and CASC compounds exhibit quantum mechanical characteristics, with values of 0.075 and 0.25 W m-1 K-1, respectively, at 300 K. It is foreseen that these outcomes will generate investigations concerning phosphors and diodes that rely on single emitters, with the aim of advancing lighting and display technologies in the forthcoming generations.

3.
J Phys Chem Lett ; 14(42): 9412-9423, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37824426

RESUMO

Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, synthesized via thermal decomposition, exhibited a remarkable specific capacity of 280.64 C/g at 2 A/g. Even under prolonged cycling at 10.5 A/g, the retention rate exceeded 95%, demonstrating exceptional stability. In an asymmetric capacitor device, the CN-Co composite delivered 20.84 Wh/kg at 1000 W/kg, with a retention rate of 99.97% over 20,000 cycles, showcasing outstanding cycling stability. Controlled cobalt source adjustments yielded high-capacity electrode materials with battery-like behavior. This optimization strategy enhances energy density by retaining battery-like properties. In summary, the CN-Co composite is a promising, low-cost, easily synthesized electrode material with a high specific capacity and remarkable cycling stability, making it an attractive choice for energy storage applications.

4.
ACS Omega ; 6(40): 26329-26337, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34660992

RESUMO

Herbicide compounds containing aromatic rings and chlorine atoms, such as 2,4,5-trichlorophenoxyacetic (2,4,5-T), cause serious environmental pollution. Furthermore, these compounds are very difficult to decompose by chemical, physical, and biological techniques. Fortunately, the high-voltage direct current electrochemical technique can be controlled to form a plasma on metallic electrodes. It creates active species, such as H2, O2, and H2O2, and free radicals, such as H•, O•, and OH•. Free radicals that have a high oxidation potential (e.g., OH•) are highly effective in oxidizing benzene-oring compounds. Iron electrodes are used in the study to combine the dissolving process of the iron anode electrode to create Fe2+ ions and the electrochemical Fenton reaction. In addition, the flocculation process by Fe(OH)2 also occurs and the plasma appears with a voltage of 5 kV on the iron electrode in a solution of 30 mg L-1 of 2,4,5-T. After a period of time of the reaction, the aromatic-oring compounds containing chlorine were effectively treated, and the electric conductivity of the solution increased due to the amount of Cl- ions released in the solution and the decrease in the pH value. The degradable products of 2,4,5-T were qualitatively characterized by gas chromatography-mass spectrometry (GC-MS), and it was determined that straight-chain carboxylic acids are formed in the solution. These compounds are easy to oxidize thoroughly under appropriate conditions in a solution via OH• free radicals. Moreover, 2,4,5-T was also quantitatively analyzed using a calibration curve from GC-MS and high-performance liquid chromatography (HPLC). Furthermore, this work also suggests that the performance of the treatment process can be optimized by controlling the technological factors, such as the input voltage, the distance between anodic and cathodic electrodes, the initial concentration of 2,4,5-T, and flowing air through the solution that represents an approximately 99.83% degradable efficiency. Finally, the work demonstrates a potential technology for treating the 2,4,5-T compound, particularly for environmental pollution treatments.

5.
Sci Rep ; 11(1): 15524, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330966

RESUMO

We developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley-Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.

6.
Int J Biol Macromol ; 177: 360-369, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33631259

RESUMO

Hematin has been used as an alternative enzyme catalyst to horseradish peroxidase (HRP) due to its iron-containing activity center. Although hematin and it derivatives have been widely used for polymerization of phenol/analine compounds, it has some drawbacks such as the limited solubility and reaction only at high pH condition. Herein, we report a nanosized biomimetic catalyst, hematin-decorated polyamidoamine dendrimer (G3.0-He) that can effectively catalyze the in situ hydrogelation of phenol-conjugated polymers under neutral pH condition. We demonstrate that G3.0-He particles are smaller than 100 nm and have excellent enzyme-mimetic functions. Interestingly, the nanosized catalyst is not inactivated at high H2O2 concentration. Compared to pure hematin, G3.0-He has significantly higher dispersion in acidic and neutral media, and preserves the percentage of survival of fibroblasts over 90%. Notably, G3.0-He possesses an exquisite HRP-mimicking activity in gelation of gelatin derivative with phenolic hydroxyl (tyamine) moieties under mild physiological conditions. The in vitro study demonstrated that Gel-Tyr hydrogel by G3.0-He catalyzed reaction had excellent cytocompatibility and an excellent scaffold for adhesion to fibroblast cells. Therefore, the designed minimalistic G3.0-He catalyst could serve as an effective catalytic alternative for HRP enzyme in the preparation of biomedical hydrogels.


Assuntos
Materiais Biomiméticos , Dendrímeros , Fibroblastos/metabolismo , Hemina , Teste de Materiais , Nanopartículas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular , Dendrímeros/química , Dendrímeros/farmacologia , Hemina/química , Hemina/farmacologia , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...