Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5800, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726263

RESUMO

The rhizosheath, or the layer of soil closely adhering to roots, can help plants to tolerate drought under moderate soil drying conditions. Rhizosheath formation is the result of poorly understood interactions between root exudates, microbes, and soil conditions. Here, we study the roles played by the soil microbiota in rhizosheath formation in barley (a dry crop). We show that barley rhizosheath formation is greater in acid soil than in alkaline soil, and inoculation with microbiota from acid soil enhances rhizosheath formation in alkaline soil. The rhizosheath-promoting activity is associated with the presence of Flavobacteriaceae and Paenibacillaceae bacteria that express genes for biosynthesis of indole-3-acetic acid (IAA, a common auxin), as determined by metagenomics and metatranscriptomics. Two bacterial strains isolated from rhizosheath (Chryseobacterium culicis and Paenibacillus polymyxa) produce IAA and enhance barley rhizosheath formation, while their IAA-defective mutants are unable to promote rhizosheath formation. Co-inoculation with the IAA-producing strains enhances barley grain yield in field experiments through an increase in spike number. Our findings contribute to our understanding of barley rhizosheath formation, and suggest potential strategies for crop improvement.


Assuntos
Hordeum , Bactérias/genética , Dessecação , Ácidos Indolacéticos , Solo
2.
Mitochondrial DNA B Resour ; 7(1): 251-252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087945

RESUMO

The complete chloroplast genome sequence of Pedicularis shansiensis Tsoong was determined and described. The circular chloroplast genome is 151,902 bp in length and contains a large single-copy region of 83,180 bp, a small single-copy region of 17,284 bp and two inverted repeat regions of 25,719 bp. The chloroplast genome contains 132 genes, including 86 protein-coding, 8 rRNA, and 38 tRNA genes. Phylogenetic analysis shows Pedicularis species cluster together and P. shansiensis forms a clade with P. dissect.

3.
Plant Physiol Biochem ; 169: 127-137, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34781213

RESUMO

Abscisic acid (ABA) is a critical hormone for plant survival upon water stress. In this study, a large-scale mutants of Arabidopsis ecotype Columbia-0 (Col-0) by ethyl methanesulfonate (EMS)-mutagenesis were generated, and an improved root elongation under water-stress 1 (irew1) mutant showing significantly enhanced root growth was isolated upon a water potential gradient assay. Then, irew1 and ABA-related mutants in Arabidopsis or tomato plants were observed under water potential gradient assay or water-deficient condition. ABA pathway, Ca2+ response and primary root (PR) elongation rate were monitored in addition to DNA- and RNA-Seq analyses. We found that based on phenotyping and transcriptional analyses, irew1 exhibited the enhanced PR growth, ABA and Ca2+ responses compared to wild-type subjected to water stress. Interestingly, exogenous Ca2+ application enhanced PR growth of irew1, ABA-biosynthesis deficient mutants in Arabidopsis and tomato plants in response to water potential gradients or water-deficient condition. In combination with other ABA-related mutants and pharmacological study, our results suggest that ABA is required for root elongation associated with Ca2+ influx in response to water stress.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Mutação , Raízes de Plantas/metabolismo
4.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731345

RESUMO

The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Plântula
5.
Plant Cell Environ ; 44(6): 1935-1945, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629760

RESUMO

Soil drying enhances root ABA accumulation and rhizosheath formation, but whether ABA mediates rhizosheath formation is unclear. Here, we used the ABA-deficient mutant Az34 to investigate molecular and morphological changes by which ABA could affect rhizosheath formation. Mild soil drying with intermittent watering increased rhizosheath formation by promoting root and root hair elongation. Attenuated root ABA accumulation in Az34 barley constrained the promotion of root length and root hair length by drying soil, such that Az34 had a smaller rhizosheath. Pharmacological experiments of adding fluridone (an ABA biosynthesis inhibitor) and ABA to drying soil restricted and enhanced rhizosheath formation respectively in Az34 and wild-type Steptoe barley. RNA sequencing suggested that ABA accumulation mediates auxin synthesis and responses and root and root hair elongation in drying soil. In addition, adding indole-3-acetic acid (IAA) to drying soil increased rhizosheath formation by promoting root and root hair elongation in Steptoe and Az34 barley. Together, these results show that ABA accumulation induced by mild soil drying enhance barley rhizosheath formation, which may be achieved through promoting auxin response.


Assuntos
Ácido Abscísico/metabolismo , Hordeum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Solo/química , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Hordeum/efeitos dos fármacos , Hordeum/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Mutação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo
6.
Front Plant Sci ; 11: 332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193463

RESUMO

Abscisic acid (ABA) is a critical hormone for plant survival under water stress. In this study, large-scale mutants of the Arabidopsis ecotype Columbia-0 (Col-0) were generated by ethyl methanesulfonate (EMS)-mutagenesis, and an improved root elongation under water-stress 1 (irew1) mutant showing significantly enhanced root growth was isolated under a water potential gradient assay. Then, irew1 and ABA-related mutants in Arabidopsis or tomato plants were observed under water potential gradient assay or water-deficient conditions. ABA pathway, Ca2+ response, and primary root (PR) elongation rate were monitored in addition to DNA- and RNA-Seq analyses. We found that based on phenotyping and transcriptional analyses, irew1 exhibited enhanced PR growth, ABA, and Ca2+ responses, compared to wild type subjected to water stress. Interestingly, exogenous Ca2+ application enhanced PR growth of irew1, ABA-biosynthesis deficient mutants in Arabidopsis, and tomato plants, in response to water potential gradients or water-deficient conditions. In combination with other ABA-related mutants and pharmacological studies, our results suggest that ABA is required for root elongation associated with Ca2+ influx in response to water stress.

7.
J Exp Bot ; 71(22): 7316-7330, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32905588

RESUMO

Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear. In this study, we found that an air system and an agar-sorbitol system induced only oblique water-potential gradients; an agar-glycerol system induced only vertical water-potential gradients; and a sand system established both oblique and vertical water-potential gradients. We employed obliquely oriented and vertically oriented experimental systems to study hydrotropism in Arabidopsis and tomato plants. Comparative analyses using different hydrotropic systems showed that gravity hindered the ability of roots to search for obliquely oriented water, whilst facilitating roots' search for vertically oriented water. We found that the gravitropism-deficient mutant aux1 showed enhanced hydrotropism in the oblique orientation but impaired root elongation towards water in the vertical orientation. The miz1 mutant exhibited deficient hydrotropism in the oblique orientation but normal root elongation towards water in the vertical orientation. Importantly, in contrast to miz1, the miz1/aux1 double mutant exhibited hydrotropic bending in the oblique orientation and attenuated root elongation towards water in the vertical orientation. Our results suggest that gravitropism is required for MIZ1-regulated root hydrotropism in both the oblique orientation and the vertical orientation, providing further insight into the role of gravity in root hydrotropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Gravitropismo , Raízes de Plantas , Tropismo , Água
8.
Materials (Basel) ; 13(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936825

RESUMO

In this work, Ti3SiC2-based ceramics were fabricated by the infiltration of liquid silicon into TiC preform by incorporating a small amount of Al. Al can play a catalytic role to promote the formation of TiC twins before liquid silicon infiltration (LSI), which leads to the increase of transformation efficiency from TiC to Ti3SiC2 in the LSI process. When the Al content in the TiC preform increases to 9 wt.%, the volume content of Ti3SiC2 reaches 85 vol.%, revealing the high electromagnetic interference shielding effectiveness of 39 dB in the frequency range of 8.2-12.4 GHz. The results indicate that it is an effective way to synthesize Ti3SiC2-based ceramics with excellent electromagnetic shielding performance.

9.
J Agric Food Chem ; 67(38): 10577-10586, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31490682

RESUMO

Root and rhizosphere is important for phosphorus (P) uptake in rice plants. However, little is known about the detailed regulation of irrigation regimes, especially frequently alternate wetting and drying (FAWD), on P usage of rice plants. Here, we found that compared with normal water and P dose, FAWD with a reduced P dose maintained the grain yield in two rice varieties. Compared to rice variety Gaoshan1, rice variety WufengyouT025 displayed a higher grain yield, shoot P content, rhizosphere acid phosphatase activity, abundance of bacteria, and bacterial acid phosphatase gene of rhizosphere. Moreover, the FAWD regime may increase the abundance of bacteria with acid phosphatase activity to release available phosphorus in the rhizosphere, which is associated with rice varieties. Our results suggest that an optimized management of irrigation and phosphorous application can enhance both water and phosphorus use efficiency without sacrificing the yield, which may contribute significantly to sustainable agriculture production.


Assuntos
Irrigação Agrícola/métodos , Produção Agrícola/métodos , Oryza/crescimento & desenvolvimento , Fósforo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Produção Agrícola/instrumentação , Fertilizantes/análise , Microbiota , Oryza/classificação , Oryza/metabolismo , Oryza/microbiologia , Rizosfera , Água/metabolismo
10.
ACS Appl Mater Interfaces ; 11(25): 22628-22636, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244026

RESUMO

Microwave absorption materials (MAMs) with lightweight density and ultrabroad-band microwave absorption performance are urgently needed in advanced MAMs, which are still a big challenge and have been rarely achieved. Here, a new wide bandwidth absorption model was designed, which fuses the electromagnetic resonance loss ability of a periodic porous structure in the low-frequency range and the dielectric loss ability of dielectric materials in the high-frequency range. Based on this model, a lightweight porous cellulose nanofiber (CNF)/carbon nanotube (CNT) foam consisting of a cellular vertical porous architecture with the macropore diameters between 30 and 90 µm and a nanoporous architecture at a scale of 1.7-50 nm was obtained by an ice-template method using CNTs and CNFs as "building blocks". Benefiting from the unique architecture, the effective absorption bandwidth reaches 29.7 GHz, and its specific microwave absorption performance exceeds 80,000 dB·cm-2·g-1, which far surpasses those of the MAMs previously reported, including all CNT-based composites. Moreover, the CNF/CNT foam possesses ultralow density (9.2 mg/cm3) and strong fatigue resistance, all coming from the well-interconnected porous structure and the strong hydrogen bonds among CNF-CNF and CNF-CNT molecular chains.

11.
Molecules ; 19(5): 5913-24, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24815310

RESUMO

Hydrogen peroxide (H2O2) and nitric oxide (NO) are key signaling molecules in cells whose levels are increased in response to various stimuli and are involved in plant secondary metabolite synthesis. In this paper, the roles of H2O2 and NO on salvianolic acid B (Sal B) production in salicylic acid (SA)-induced Salvia miltiorrhiza cell cultures were investigated. The results showed that H2O2 could be significantly elicited by SA, even though IMD (an inhibitor of NADPH oxidase) or DMTU (a quencher of H2O2) were employed to inhibit or quench intracellular H2O2. These elicited H2O2 levels significantly increased NO production by 1.6- and 1.46 fold in IMD+SA and DMTU+SA treatments, respectively, and induced 4.58- and 4.85-fold Sal B accumulation, respectively. NO was also markedly elicited by SA, in which L-NNA (an inhibitor of NO synthase) and cPTIO (a quencher of NO) were used to inhibit or quench NO within cells, and the induced NO could significantly enhance H2O2 production by 1.92- and 1.37-fold in L-NNA+SA and cPTIO+SA treatments, respectively, and 3.27- and 1.50-fold for Sal B accumulation, respectively. These results indicate that elicitation of SA for either H2O2 or NO was independent, and the elicited H2O2 or NO could act independently or synergistically to induce Sal B accumulation in SA-elicited cells.


Assuntos
Benzofuranos/metabolismo , Salvia miltiorrhiza/metabolismo , Transdução de Sinais/genética , Benzofuranos/química , Técnicas de Cultura de Células , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/química , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Salvia miltiorrhiza/citologia , Salvia miltiorrhiza/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 29(12): 1836-46, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24660631

RESUMO

In order to study the effects of Ca2+ in the biosynthesis of salvianolic acid B (Sal B) induced by salicylic acid (SA) in the young seedlings of Salvia miltiorrhiza, we used confocal laser scanning microscopy and high performance liquid chromatography to measure the change of relative fluorescence intensity of Ca2+ and the contents of Sal B induced by SA before and after the application of extracellular calcium channel inhibitors (VP and LaCl3), intracellular calcium channel inhibitor (LiCl), as well as intracellular calmodulin antagonist (TFP). SA could induce the calcium burst, and the Ca2+ peak could last to 2-3 min in the guard cells of S. miltiorrhiza, which prompted the biosynthesis of Sal B after the Ca2+ burst. Both Vp or LaCl3, and LiCl or TFP could inhibit the burst of Ca2+ and the biosynthesis of Sal B. The above results demonstrated that Ca2+ from the extracellular and the intracellular calcium store regulate the biosynthesis of Sal B elicited by salicylic acid in S. miltiorrhiz young seedlings.


Assuntos
Benzofuranos/metabolismo , Cálcio/metabolismo , Ácido Salicílico/farmacologia , Salvia miltiorrhiza/metabolismo , Plântula/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais
13.
Zhongguo Zhong Yao Za Zhi ; 38(20): 3424-31, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24490547

RESUMO

OBJECTIVE: To investigate the effect of intracellular and extracellular Ca2+ on the biosynthesis of rosmarinic acid (RA) induced by salicylic acid in young seedlings of Salvia miltiorrhiza. METHOD: Young seedlings of S. miltiorrhiza were used to select an optimal concentration of salicylic acid (SA), and then use the optimal concentration of SA to investigate the effects of extracellular Ca2+ channel inhibitors Verapamil, LaCl3, intracelluar calmodulin antagonist TFP and intracelluar Ca2+ channel inhibitors LiCl on the biosynthesis of RA and related enzymes. RESULT: SA increased the accumulation of RA and the activities of PAL and TAT, especially the SA of 2 mmol x L(-1) after 24 h. SA improved the accumulation of RA to (40.51 +/- 2.16) mg x g(-1), which was 1.97 times than that of control, and the activities of PAL, TAT were 1.42 times and 1.29 times than those of the control. However, Vp, LaCl3, TFP, LiCl inhibited the effects of SA evidently. CONCLUSION: Ca2+ plays a key role in the regulation of the induction process.


Assuntos
Cálcio/metabolismo , Cinamatos/metabolismo , Depsídeos/metabolismo , Ácido Salicílico/metabolismo , Salvia miltiorrhiza/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Ácido Rosmarínico
14.
Sheng Wu Gong Cheng Xue Bao ; 28(11): 1359-69, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23457788

RESUMO

We studied the influence of the concentration of Ca2+ (0-50 mmol/L) in culture medium on the synthesis of rosmarinic acid (RA) and related enzymes in Salvia miltiorrhiza suspension cultures. Using verpamil (VP, a calcium channel antagonist) and ionophore A23187, we studied the mechanism of secondary metabolites of Salvia miltiorrhiza suspension cultures influenced by the concentration of Ca2+ in the culture medium. The synthesis of intracellular RA in 6-day incubation was significantly dependent on the medium Ca2+ concentration. At the optimal Ca2+ concentration of 10 mmol/L, a maximal RA content of 20.149 mg/g biomass dry weight was reached, which was about 37.3% and 20.4% higher than that at Ca2+ concentrations of 1 and 3 mmol/L, respectively. The variation of the activity of PAL and TAT, two key enzymes of the two branches of RA, could be affected by the concentration of Ca2+ in culture medium. The change of their activity occurred prior to the accumulation of RA, which suggested both of the key enzymes be involved in the synthesis of RA. Meanwhile, the enzymatic action of PAL was more distinct than TAT. The treatment of VP and A23187, respectively, indicated that the influence of RA affected by the concentration of Ca2+ in the culture medium was accomplished by the intracellular Ca2+, and the flow of Ca2+ from the extracellular to the intracellular environment could also participate in this process.


Assuntos
Cálcio/farmacologia , Cinamatos/metabolismo , Depsídeos/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/enzimologia , Meios de Cultura , Técnicas de Cultura/métodos , Fenilalanina Amônia-Liase/metabolismo , Salvia miltiorrhiza/crescimento & desenvolvimento , Tirosina Transaminase/metabolismo , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...