Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255781

RESUMO

Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fosfatase Alcalina , Camundongos Obesos , Colite/induzido quimicamente , Colite/terapia , Anti-Inflamatórios , Corantes , Citocinas
2.
Redox Biol ; 66: 102847, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597422

RESUMO

Hydrogen sulfide (H2S) signaling and H2S-prodrugs maintain redox balance in gastrointestinal (GI) tract. Predominant effect of any H2S-donor is mitochondrial. Non-targeted H2S-moieties were shown to decrease the non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastrotoxicity but in high doses. However, direct, controlled delivery of H2S to gastric mucosal mitochondria as a molecular target improving NSAIDs-pharmacology remains overlooked. Thus, we treated Wistar rats, i.g. with vehicle, mitochondria-targeted H2S-releasing AP39 (0.004-0.5 mg/kg), AP219 (0.02 mg/kg) as structural control without H2S-releasing ability, or AP39 + SnPP (10 mg/kg) as a heme oxygenase (HMOX) inhibitor. Next, animals were administered i.g. with acetylsalicylic acid (ASA, 125 mg/kg) as NSAIDs representative or comparatively with 75% ethanol to induce translational hemorrhagic or necrotic gastric lesions, that were assessed micro-/macroscopically. Activity of mitochondrial complex IV/V, and DNA oxidation were assessed biochemically. Gastric mucosal/serum content of IL-1ß, IL-10, TNF-α, TGF-ß1/2, ARG1, GST-α, or phosphorylation of mTOR, NF-κB, ERK, Akt, JNK, STAT3/5 were evaluated by microbeads-fluorescent xMAP®-assay; gastric mucosal mRNA level of HMOX-1/2, COX-1/2, SOD-1/2 by real-time PCR. AP39 (but not AP219) dose-dependently (0.02 and 0.1 mg/kg) diminished NSAID- (and ethanol)-induced gastric lesions and DNA oxidation, restoring mitochondrial complexes activity, ARG1, GST-α protein levels and increasing HMOX-1 and SOD-2 expression. AP39 decreased proteins levels or phosphorylation of gastric mucosal inflammation/oxidation-sensitive markers and restored mTOR phosphorylation. Pharmacological inhibition of HMOX-1 attenuated AP39-gastroprotection. We showed that mitochondria-targeted H2S released from very low i.g. doses of AP39 improved gastric mucosal capacity to cope with NSAIDs-induced mitochondrial dysfunction and redox imbalance, mechanistically requiring the activity of HMOX-1.


Assuntos
Heme Oxigenase (Desciclizante) , Sulfetos , Ratos , Animais , Ratos Wistar , Heme Oxigenase (Desciclizante)/genética , Fosforilação , Anti-Inflamatórios não Esteroides , Aspirina
3.
Antioxid Redox Signal ; 36(4-6): 189-210, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33678013

RESUMO

Aims: Nonsteroidal anti-inflammatory drugs, including ketoprofen, induce adverse effects within the gastrointestinal (GI)-tract. Hydrogen sulfide (H2S) is an antioxidative gaseous mediator contributing to GI-protection. We aimed to evaluate the GI safety of a novel H2S-releasing derivative of ketoprofen (ATB-352) versus classic ketoprofen and the molecular mechanisms of their activity after chronic treatment in experimental animal models. Results: Ketoprofen (10 mg/kg/day) administered intragastrically for 7 days in contrast with ATB-352 (14 mg/kg/day) reduced mucosal H2S content inducing GI damage with significantly increased injury score, altered intestinal microbiome profile, and modulation of more than 50% of 36 investigated molecular sensors (e.g., mammalian target of rapamycin or suppressor of cytokine signaling 3 [SOCS3]). Polypharmacy with aspirin (10 mg/kg/day) enhanced ketoprofen toxicity not affecting GI safety of ATB-352. Omeprazole (20 mg/kg/day) decreased ketoprofen-induced injury to the level of ATB-352 alone. Both compounds combined or not with aspirin or omeprazole maintained the ability to inhibit cyclooxygenase (COX) activity manifested by decreased prostaglandin production. Innovation and Conclusions: Ketoprofen-induced H2S-production decrease and intestinal microbiome profile alterations lead to GI toxicity observed on macro-/microscopic and molecular levels. Ketoprofen but not ATB-352 requires concomitant treatment with omeprazole to eliminate GI adverse effects. ATB-352 applied alone or in a polypharmacy setting with aspirin effectively inhibited COX and maintained GI safety due to H2S-release. Neither compound affected DNA oxidation in the GI mucosa, but ATB-352 had lower impact on molecular oxidative/inflammatory response pathways and intestinal microbiome. The GI safety of ATB-352 could be due to the involvement of heme oxygenase 1 and SOCS3 pathway activation. Antioxid. Redox Signal. 36, 189-210.


Assuntos
Sulfeto de Hidrogênio , Microbiota , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Trato Gastrointestinal , Humanos , Sulfeto de Hidrogênio/farmacologia , Mamíferos , Polimedicação
4.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069086

RESUMO

Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5-50 µmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 µmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacocinética , Substâncias Protetoras/farmacologia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Aspirina/efeitos adversos , DNA/metabolismo , Liberação Controlada de Fármacos , Etanol/toxicidade , Mucosa Gástrica/irrigação sanguínea , Mucosa Gástrica/patologia , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Nitroarginina/administração & dosagem , Nitroarginina/farmacologia , Pró-Fármacos/farmacocinética , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/metabolismo , Substâncias Protetoras/administração & dosagem , Protoporfirinas/administração & dosagem , Protoporfirinas/farmacologia , Ratos Wistar
5.
Front Pharmacol ; 12: 657457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995080

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.

6.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557311

RESUMO

Intestinal alkaline phosphatase (IAP) is an essential mucosal defense factor involved in the process of maintenance of gut homeostasis. We determined the effect of moderate exercise (voluntary wheel running) with or without treatment with IAP on the course of experimental murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis by assessing disease activity index (DAI), colonic blood flow (CBF), plasma myokine irisin levels and the colonic and adipose tissue expression of proinflammatory cytokines, markers of oxidative stress (SOD2, GPx) and adipokines in mice fed a standard diet (SD) or high-fat diet (HFD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant decrease in CBF, and a significant increase in the colonic expression of tumor necrosis factor-alpha (TNF-α), IL-6, IL-1ß and leptin mRNAs and decrease in the mRNA expression of adiponectin. These effects were aggravated in sedentary HFD mice but reduced in exercising animals, potentiated by concomitant treatment with IAP, especially in obese mice. Exercising HFD mice demonstrated a substantial increase in the mRNA for adiponectin and a decrease in mRNA leptin expression in intestinal mucosa and mesenteric fat as compared to sedentary animals. The expression of SOD2 and GPx mRNAs was significantly decreased in adipose tissue in HFD mice, but these effects were reversed in exercising mice with IAP administration. Our study shows for the first time that the combination of voluntary exercise and oral IAP treatment synergistically favored healing of intestinal inflammation, strengthened the antioxidant defense and ameliorated the course of experimental colitis; thus, IAP may represent a novel adjuvant therapy to alleviate inflammatory bowel disease (IBD) in humans.

7.
Cells ; 9(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408627

RESUMO

Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development. RE induced in Wistar rats by the ligation of a junction between pylorus and forestomach were pretreated i.g. with vehicle CORM-2; RuCl3; zinc protoporphyrin IX, or hemin. CORM-2 was combined with NG-nitro-L-arginine (L-NNA), indomethacin, capsazepine, or capsaicin-induced sensory nerve ablation. Esophageal lesion score (ELS), esophageal blood flow (EBF), and mucus production were determined by planimetry, laser flowmetry, histology. Esophageal Nrf-2, HMOXs, COXs, NOSs, TNF-α and its receptor, IL-1 family and IL-1 receptor antagonist (RA), NF-κB, HIF-1α, annexin-A1, suppressor of cytokine signaling (SOCS3), TRPV1, c-Jun, c-Fos mRNA/protein expressions, PGE2, 8-hydroxy-deoxyguanozine (8-OHdG) and serum COHb, TGF-ß1, TGF-ß2, IL-1ß, and IL-6 content were assessed by PCR, immunoblotting, immunohistochemistry, gas chromatography, ELISA or Luminex platform. Hemin or CORM-2 alone or combined with L-NNA or indomethacin decreased ELS. Capsazepine or capsaicin-induced denervation reversed CORM-2 effects. COHb blood content, esophageal HMOX-1, Nrf-2, TRPV1 protein, annexin-A1, HIF-1α, IL-1 family, NF-κB, c-Jun, c-Fos, SOCS3 mRNA expressions, and 8-OHdG levels were elevated while PGE2 concentration was decreased after RE. CO donor-maintained elevated mucosal TRPV1 protein, HIF-1 α, annexin-A1, IL-1RA, SOCS3 mRNA expression, or TGF-ß serum content, decreasing 8-OHdG level, and particular inflammatory markers expression/concentration. CORM-2 and Nrf-2/HMOX-1/CO pathway prevent esophageal mucosa against RE-induced lesions, DNA oxidation, and inflammatory response involving HIF-1α, annexin-A1, SOCS3, IL-1RA, TGF-ß-modulated pathways. Esophagoprotective and hyperemic CO effects are in part mediated by afferent sensory neurons and TRPV1 receptors activity with questionable COX/PGE2 or NO/NOS systems involvement.


Assuntos
Monóxido de Carbono/farmacologia , Mucosa Esofágica/patologia , Esofagite/patologia , Compostos Organometálicos/farmacologia , Substâncias Protetoras/farmacologia , Doença Aguda , Animais , Carboxihemoglobina/metabolismo , Hipóxia Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Mucosa Esofágica/efeitos dos fármacos , Esofagite/sangue , Esôfago/irrigação sanguínea , Esôfago/patologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Muco/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Fluxo Sanguíneo Regional/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Curr Pharm Des ; 26(25): 2936-2950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32338209

RESUMO

Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential "nonpharmacological" alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.


Assuntos
Colite , Terapias Complementares , Doenças Inflamatórias Intestinais , Fosfatase Alcalina , Animais , Exercício Físico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico
9.
Biomolecules ; 9(12)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779136

RESUMO

Inflammatory bowel diseases (IBDs) are a group of disorders which include ulcerative colitis and Crohn's disease. Obesity is becoming increasingly more common among patients with inflammatory bowel disease and plays a role in the development and course of the disease. This is especially true in the case of Crohn's disease. The recent results indicate a special role of visceral adipose tissue and particularly mesenteric adipose tissue, also known as "creeping fat", in pathomechanism, leading to intestinal inflammation. The involvement of altered adipocyte function and the deregulated production of adipokines, such as leptin and adiponectin, has been suggested in pathogenesis of IBD. In this review, we discuss the epidemiology and pathophysiology of obesity in IBD, the influence of a Western diet on the course of Crohn's disease and colitis in IBD patients and animal's models, and the potential role of adipokines in these disorders. Since altered body composition, decrease of skeletal muscle mass, and development of pathologically changed mesenteric white adipose tissue are well-known features of IBD and especially of Crohn's disease, we discuss the possible crosstalk between adipokines and myokines released from skeletal muscle during exercise with moderate or forced intensity. The emerging role of microbiota and the antioxidative and anti-inflammatory enzymes such as intestinal alkaline phosphatase is also discussed, in order to open new avenues for the therapy against intestinal perturbations associated with IBD.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Branco/patologia , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Obesidade/complicações , Tecido Adiposo Branco/metabolismo , Animais , Colite Ulcerativa/complicações , Colite Ulcerativa/epidemiologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/fisiopatologia , Doença de Crohn/complicações , Doença de Crohn/epidemiologia , Doença de Crohn/metabolismo , Doença de Crohn/fisiopatologia , Dieta Ocidental/efeitos adversos , Humanos , Inflamação/enzimologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Microbiota/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Fatores de Risco
10.
Adv Med Sci ; 64(1): 104-110, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30605863

RESUMO

Difference in the metabolism of normal and cancer cells inspires to search for new, more specific and less toxic therapies than those currently used. The development of tumors is conditioned by genetic changes in cancer-transformed cells, immunological tolerance and immunosuppression. At the initial stages of carcinogenesis, the immune system shows anti-tumor activity, however later, cancer disrupts the function of Th1/Th17/Th2 lymphocytes by regulatory T (Treg) cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) and finally causes immunosuppression. Recently, much attention has been devoted to the influence of l-arginine metabolism disorders on both carcinogenesis and the immune system. l-Arginine is essential for the maturation of the T cell receptor zeta (TCRζ), and its absence deprives T-cells of the ability to interact with tumor antigens. MDSCs deplete l-arginine due to a high expression of arginase 1 (ARG1) and their number increases 4-10 times depending on the type of the cancer. L-Arginine has been shown to be essential for the survival and progression of arginine auxotrophic tumors. However, the progression of arginine non-auxotrophic tumors is independent of exogenous l-arginine, because these tumors have arginine-succinate synthetase (ASS1) activity and are available to produce l-arginine from citrulline. Clinical studies have confirmed the high efficacy of arginine auxotrophic tumors therapy based on the elimination of l-arginine. However, l-arginine supplementation may improve the results of treatment of patients with arginine non-auxotrophic cancer. This review is an attempt to explain the seemingly contradictory results of oncological therapies based on the deprivation or supplementation of l-arginine.


Assuntos
Arginina/metabolismo , Redes e Vias Metabólicas , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Humanos , Células Supressoras Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...