Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973457

RESUMO

Conjugates of benzothiophene-fused azacyclononyne BT9N-NH2 with fluorescent dyes were developed to visualise azidoglycans intracellularly. The significance of the cycloalkyne core was demonstrated by comparing new reagents with DBCO- and BCN-dye conjugates. To reduce non-specificity during intracellular bioconjugation using SPAAC, less reactive BT9N-dye reagents are preferred over highly reactive DBCO- and BCN-dye conjugates.

2.
Org Biomol Chem ; 22(20): 4096-4107, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38695707

RESUMO

Electrophile-promoted cyclizations of functionalized alkynes offer a useful tool for constructing halogen-substituted heterocycles primed for further derivatization. Preinstallation of an iodo-substituent at the alkyne prior to iodo-cyclization opens access to ortho di-iodinated heterocyclic precursors for the preparation of unsymmetrical heterocycle-fused enediynes. This general approach was used to prepare 2,3-diiodobenzothiophene, 2,3-diiodoindole, and 2,3-diiodobenzofuran, a useful family of substrates for systematic studies of the role of heteroatoms on the regioselectivity of cross-coupling reactions. Diiodobenzothiophene showed much higher regioselectivity for Sonogashira cross-coupling at C2 than diiodoindole and diiodobenzofuran. As a result, benzothiophene can be conveniently involved in a one-pot sequential coupling with two different alkynes, yielding unsymmetrical benzothiophene-fused enediynes. On the other hand, the Sonogashira reaction of diiodoindole and diiodobenzofuran formed considerable amounts of di-substituted enediynes in addition to the monoalkyne product by coupling at C2. Interestingly, no C3-monocoupling products were observed for all of the diiodides, suggesting that the incorporation of the 1st alkyne at C2 activates the C3 position for the 2nd coupling. Additional factors affecting regioselectivity were detected, discussed and connected, through computational analysis, to transmetalation being the rate-determining step for the Sonogashira reaction. Several enediynes synthesized showed cytotoxic activity, which is not associated with DNA strand breaks typical of natural enediyne antibiotics.

3.
Chemistry ; 29(47): e202300540, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293937

RESUMO

Fluorescent isocoumarin-fused cycloalkynes, which are reactive in SPAAC and give fluorescent triazoles regardless of the azide nature, have been developed. The key structural feature that converts the non-fluorescent cycloalkyne/triazole pair to its fluorescent counterpart is the pi-acceptor group (COOMe, CN) at the C6 position of the isocoumarin ring. The design of the fluorescent cycloalkyne/triazole pairs is based on the theoretical study of the S1 state deactivation mechanism of the non-fluorescent isocoumarin-fused cycloalkyne IC9O using multi-configurational ab initio and DFT methodologies. The calculations revealed that deactivation proceeds through the electrocyclic ring opening of the α-pyrone cycle and is accompanied by a redistribution of electron density in the fused benzene ring. We proposed that the S1 excited state deactivation barrier could be increased by introducing a pi-acceptor group into a position that is in direct conjugation with the formed C=O group and has a reduced electron density in the transition state. As a proof of concept, we designed and synthesized two fluorescent isocoumarin-fused cycloalkynes IC9O-COOMe and IC9O-CN bearing pi-acceptors at the C6 position. The importance of the nature of a pi-acceptor group was shown by the example of much less fluorescent CF3 -substituted cycloalkyne IC9O-CF3 .

4.
Molecules ; 27(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36144808

RESUMO

The scope and limitations of the Nicholas-type cyclization for the synthesis of 10-membered benzothiophene-fused heterocyclic enediynes with different functionalities were investigated. Although the Nicholas cyclization through oxygen could be carried out in the presence of an ester group, the final oxaenediyne was unstable under storage. Among the N-type Nicholas reactions, cyclization via an arenesulfonamide functional group followed by mild Co-deprotection was found to be the most promising, yielding 10-membered azaendiynes in high overall yields. By contrast, the Nicholas cyclization through the acylated nitrogen atom did not give the desired 10-membered cycle. It resulted in the formation of a pyrroline ring, whereas cyclization via an alkylated amino group resulted in a poor yield of the target 10-membered enediyne. The acylated 4-aminobenzenesulfonamide nucleophilic group was found to be the most convenient for the synthesis of functionalized 10-membered enediynes bearing a clickable function, such as a terminal triple bond. All the synthesized cyclic enediynes exhibited moderate activity against lung carcinoma NCI-H460 cells and had a minimal effect on lung epithelial-like WI-26 VA4 cells and are therefore promising compounds in the search for novel antitumor agents that can be converted into conjugates with tumor-targeting ligands.


Assuntos
Enedi-Inos , Ésteres , Ciclização , Nitrogênio , Oxigênio , Sulfanilamida
5.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630673

RESUMO

Cu-catalyzed 1,3-dipolar cycloaddition of ethyl 2-azidoacetate to iodobuta-1,3-diynes and subsequent Sonogashira cross-coupling were used to synthesize a large series of new triazole-based push-pull chromophores: 4,5-bis(arylethynyl)-1H-1,2,3-triazoles. The study of their optical properties revealed that all molecules have fluorescence properties, the Stokes shift values of which exceed 150 nm. The fluorescent properties of triazoles are easily adjustable depending on the nature of the substituents attached to aryl rings of the arylethynyl moieties at the C4 and C5 atoms of the triazole core. The possibility of 4,5-bis(arylethynyl)-1,2,3-triazoles' application for labeling was demonstrated using proteins and the HEK293 cell line. The results of an MTT test on two distinct cell lines, HEK293 and HeLa, revealed the low cytotoxicity of 4,5-bis(arylethynyl)triazoles, which makes them promising fluorescent tags for labeling and tracking biomolecules.


Assuntos
Di-Inos , Triazóis , Reação de Cicloadição , Células HEK293 , Células HeLa , Humanos , Triazóis/farmacologia
6.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946541

RESUMO

A new type of fluorogenic and fluorochromic probe based on the reduction of weakly fluorescent 4-azido-6-(4-cyanophenyl)cinnoline to the corresponding fluorescent cinnoline-4-amine was developed. We found that the fluorescence of 6-(4-cyanophenyl)cinnoline-4-amine is strongly affected by the nature of the solvent. The fluorogenic effect for the amine was detected in polar solvents with the strongest fluorescence increase in water. The environment-sensitive fluorogenic properties of cinnoline-4-amine in water were explained as a combination of two types of fluorescence mechanisms: aggregation-induced emission (AIE) and excited state intermolecular proton transfer (ESPT). The suitability of an azide-amine pair as a fluorogenic probe was tested using a HepG2 hepatic cancer cell line with detection by fluorescent microscopy, flow cytometry, and HPLC analysis of cells lysates. The results obtained confirm the possibility of the transformation of the azide to amine in cells and the potential applicability of the discovered fluorogenic and fluorochromic probe for different analytical and biological applications in aqueous medium.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Células Hep G2 , Humanos , Microscopia de Fluorescência , Espectrometria de Fluorescência
7.
J Am Chem Soc ; 143(40): 16519-16537, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582682

RESUMO

In the search for fundamentally new, active, stable, and readily synthetically accessible cycloalkynes as strain-promoted azide-alkyne cycloaddition (SPAAC) reagents for bioorthogonal bioconjugation, we integrated two common approaches: the reagent destabilization by the increase of a ring strain and the transition state stabilization through electronic effects. As a result new SPAAC reagents, heterocyclononynes fused to a heterocyclic core, were created. These compounds can be obtained through a general synthetic route based on four crucial steps: the electrophile-promoted cyclization, Sonogashira coupling, Nicholas reaction, and final deprotection of Co-complexes of cycloalkynes from cobalt. Varying the natures of the heterocycle and heteroatom allows for reaching the optimal stability-reactivity balance for new strained systems. Computational and experimental studies revealed similar SPAAC reactivities for stable 9-membered isocoumarin- and benzothiophene-fused heterocycloalkynes and their unstable 8-membered homologues. We discovered that close reactivity is a result of the interplay of two electronic effects, which stabilize SPAAC transition states (πin* → σ* and π* → πin*) with structural effects such as conformational changes from eclipsed to staggered conformations in the cycloalkyne scaffold, that noticeably impact alkyne bending and reactivity. The concerted influence of a heterocycle and a heteroatom on the polarization of a triple bond in highly strained cycles along with a low HOMO-LUMO gap was assumed to be the reason for the unpredictable kinetic instability of all the cyclooctynes and the benzothiophene-fused oxacyclononyne. The applicability of stable isocoumarin-fused azacyclononyne IC9N-BDP-FL for in vitro bioconjugation was exemplified by labeling and visualization of HEK293 cells carrying azido-DNA and azido-glycans.


Assuntos
Azidas
8.
J Org Chem ; 85(14): 9001-9014, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32506914

RESUMO

The applicability of an intramolecular Nicholas reaction for the preparation of 10-membered O- and N-enediynes fused to indole, 1,2,3-triazole, and isocoumarin was investigated. The general approach to acyclic enediyne precursors fused to heterocycles includes inter- and intramolecular buta-1,3-diyne cyclizations with the formation of iodoethynylheterocycles, followed by Sonogashira coupling. The nature of both a heterocycle and a nucleophilic group affects the possibility of a 10-membered ring closure by the Nicholas reaction. Among oxacycles, an isocoumarin-fused enediyne was obtained. In the case of O-enediyne annulated with indole, instead of the formation of a 10-membered cycle, BF3-promoted addition of an OH-group to the proximal triple bond at the C3 position afforded dihydrofuryl-substituted indole. For 1,2,3-triazole-fused analogues, using NH-Ts as a nucleophilic functional group allowed obtaining 10-membered azaenediyne, while the substrate with a hydroxyl group gave only traces of the desired 10-membered oxacycle. An improved method for the deprotection of Co-complexes of cyclic enediynes using tetrabutylammonium fluoride in an acetone/water mixture and the investigation of the 10-membered enediynes' reactivity in the Bergman cyclization are also reported. In the solid state, all synthesized iodoethynylheterocycles were found to be involved in halogen bond (XB) formation with either O or N atoms as XB acceptors.

9.
Molecules ; 24(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252657

RESUMO

An efficient approach towards the synthesis of 6-aryl-4-azidocinnolines was developed with the aim of exploring the photophysical properties of 6-aryl-4-azidocinnolines and their click reaction products with alkynes, 6-aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. The synthetic route is based on the Richter-type cyclization of 2-ethynyl-4-aryltriazenes with the formation of 4-bromo-6-arylcinnolines and nucleophilic substitution of a bromine atom with an azide functional group. The developed synthetic approach is tolerant to variations of functional groups on the aryl moiety. The resulting azidocinnolines were found to be reactive in both CuAAC with terminal alkynes and SPAAC with diazacyclononyne, yielding 4-triazolylcinnolines. It was found that 4-azido-6-arylcinnolines possess weak fluorescent properties, while conversion of the azido function into a triazole ring led to complete fluorescence quenching. The lack of fluorescence in triazoles could be explained by the non-planar structure of triazolylcinnolines and a possible photoinduced electron transfer (PET) mechanism. Among the series of 4-triazolylcinnoline derivatives a compound bearing hydroxyalkyl substituent at triazole ring was found to be cytotoxic to HeLa cells.


Assuntos
Antineoplásicos/síntese química , Compostos Heterocíclicos com 2 Anéis/síntese química , Triazóis/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Química Click , Células HeLa , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Estrutura Molecular , Triazóis/química , Triazóis/farmacologia
10.
J Org Chem ; 84(4): 1925-1940, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30632741

RESUMO

Cu-catalyzed 1,3-dipolar cycloaddition of iododiacetylenes with organic azides using iodotris(triphenylphosphine)copper(I) as a catalyst was found to be an efficient one-step synthetic route to 5-iodo-4-ethynyltriazoles. The reaction is tolerant to various functional groups in both butadiyne and azide moieties. The synthetic application of 5-iodo-4-ethynyl triazoles obtained was also evaluated: the Sonogashira coupling with alkynes resulted in unsymmetrically substituted triazole-fused enediyne systems, while the Suzuki reaction yielded the corresponding 5-aryl-4-ethynyl triazoles.

11.
J Org Chem ; 83(5): 2788-2801, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29402088

RESUMO

To find promising analogues of naturally occurring enediyne antibiotics with a sufficient reactivity in the Bergman cyclization and moderately stable under isolation and storage, a scale of relative enediynes reactivity was created on the basis of calculated free activation energies for the Bergman cyclization within 12 known and new benozothiophene, benzene, and cinnoline annulated 9- and 10-membered enediynes. To verify the predicted reactivity/stability balance, three new carbocyclic enediynes fused to a benzothiophene core bearing 3,4,5-trimethoxybenzene, fluoroisopropyl, and isopropenyl substituents were synthesized using the Nicholas-type macrocyclization. It was confirmed that annulation of a 3,4,5-trimethoxybenzene moiety to a 10-membered enediyne macrocycle imparts high reactivity to an enediyne while also conferring instability under ambient temperature. Fluoroisopropyl-substituted 10-membered enediyne from the opposite end of the scale was found to be stable while moderately reactive in the Bergman cyclization. Along with the experimentally confirmed moderate reactivity (DSC kinetic studies), (fluoroisopropyl)enediyne showed a significant DNA damaging activity in plasmid cleavage assays comparable with the known anticancer drug Zeocin.


Assuntos
Enedi-Inos/química , Tiofenos/química , Ciclização , Dano ao DNA , Estabilidade de Medicamentos , Enedi-Inos/farmacologia , Modelos Moleculares , Conformação Molecular , Teoria Quântica
12.
Beilstein J Org Chem ; 11: 373-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977711

RESUMO

Novel poly(arylene ethynylene)s comprising a cinnoline core were prepared in high yields via a three-step methodology. A Richter-type cyclization of 2-ethynyl- and 2-(buta-1,3-diynyl)aryltriazenes was used for cinnoline ring formation, followed by a Sonogashira coupling for the introduction of trimethylsilylethynyl moieties and a sila-Sonogashira coupling as the polycondensation technique. The fluorescence of the cinnoline-containing polymers in THF was highly sensitive to quenching by Pd(2+) ions.

13.
J Org Chem ; 80(11): 5546-55, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902151

RESUMO

The feasibility of ring-closing metathesis (RCM) as a synthetic entry to 10- and 11-membered dienediynes fused to a benzothiophene core was explored by experimental and theoretical investigations. An established sequence of iodocyclization of o-(buta-1,3-diynyl)thioanisoles followed by Sonogashira coupling to form diethynylbenzothiophenes was used to synthesize terminal benzothiophene-fused enediyne diolefins as substrates for RCM. Encountering an unexpected lack of reactivity of these substrates under standard RCM conditions, we applied DFT calculations to reveal that the underlying cause was a positive change in Gibbs free energy. The change in Gibbs free energy was also found to be positive for RCM of indole- and benzannulated terminal diolefins when affording smaller than 12-membered rings. We found that modification of the enediyne-diolefin substrate as the Co2(CO)6-alkyne complex allowed the target benzothiophene-fused 11-membered dienediyne to be obtained via RCM; the alkyne complexation strategy therefore provides one valid technique for overcoming challenges to macrocyclization of this kind.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA