Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(3): 771-786, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38495220

RESUMO

Current treatments against organophosphate poisoning (OPP) do not directly address effects mediated by the overstimulation of nicotinic acetylcholine receptors (nAChR). Non-oxime bispyridinium compounds (BPC) promote acetylcholine esterase-independent recovery of organophosphate-induced paralysis. Here, we test the hypothesis that they act by positive modulatory action on nAChRs. Using two-electrode voltage clamp analysis in combination with mutagenesis and molecular docking analysis, the potency and molecular mode of action of a series of nine BPCs was investigated on human α7 and muscle-type nAChRs expressed in Xenopus laevis oocytes. The investigated BPCs inhibited α7 and/or muscle-type nAChRs with IC50 values in the high nanomolar to high micromolar range. Further analysis of the most potent analogues revealed a noncompetitive, voltage-dependent inhibition. Co-application with the α7-selective positive allosteric modulator PNU120596 and generation of α7/5HT3 receptor chimeras excluded direct interaction with the PNU120596 binding site and binding to the extracellular domain of the α7 nAChR, suggesting that they act as open channel blockers (OCBs). Molecular docking supported by mutagenesis localized the BPC binding area in the outer channel vestibule between the extracellular and transmembrane domains. Analysis of BPC action on other cation-selective channels suggests a rather nonspecific inhibition of pentameric cation channels. BPCs have been shown to ameliorate organophosphate-induced paralysis in vitro and in vivo. Our data support molecular action as OCBs at α7 and muscle-type nAChRs and suggest that their positive physiological effects are more complex than anticipated and require further investigation.

2.
Epilepsia ; 64(8): 2126-2136, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177976

RESUMO

OBJECTIVE: Gain of function variants in the sodium-activated potassium channel KCNT1 have been associated with pediatric epilepsy disorders. Here, we systematically examine a spectrum of KCNT1 variants and establish their impact on channel function in multiple cellular systems. METHODS: KCNT1 variants identified from published reports and genetic screening of pediatric epilepsy patients were expressed in Xenopus oocytes and HEK cell lines. Variant impact on current magnitude, current-voltage relationships, and sodium ion modulation were examined. RESULTS: We determined basic properties of KCNT1 in Xenopus oocyte and HEK systems, including the role of extra- and intracellular sodium in regulating KCNT1 activity. The most common six KCNT1 variants demonstrated strong gain of function (GOF) effects on one or more channel properties. Analysis of 36 total variants identified phenotypic heterogeneity but a strong tendency for pathogenic variants to exert GOF effects on channel properties. By controlling intracellular sodium, we demonstrate that multiple pathogenic KCNT1 variants modulate channel voltage dependence by altering the sensitivity to sodium ions. SIGNIFICANCE: This study represents the largest systematic functional examination of KCNT1 variants to date. We both confirm previously reported GOF channel phenotypes and expand the number of variants with in vitro GOF effects. Our data provide further evidence that novel KCNT1 variants identified in epilepsy patients lead to disease through generalizable GOF mechanisms including increases in current magnitude and/or current-voltage relationships.


Assuntos
Epilepsia , Mutação com Ganho de Função , Humanos , Canais de Potássio Ativados por Sódio/genética , Mutação , Epilepsia/genética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas do Tecido Nervoso/genética
3.
Microorganisms ; 10(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36557665

RESUMO

Aspidasept (Pep19-2.5) and its derivative Pep19-4LF ("Aspidasept II") are anti-infective and anti-inflammatory synthetic polypeptides currently in development for application against a variety of moderate to severe bacterial infections that could lead to systemic inflammation, as in the case of severe sepsis and septic shock, as well as application to non-systemic diseases in the case of skin and soft tissue infections (SSTI). In the present study, Aspidasept and Aspidasept II and their part structures were analysed with respect to their toxic behavior in different established models against a variety of relevant cells, and in electrophysiological experiments targeting the hERG channel according to ICH S7B. Furthermore, the effects in mouse models of neurobiological behavior and the local lymph node according to OECD test guideline 429 were investigated, as well as a rat model of repeated dose toxicology according to ICH M3. The data provide conclusive information about potential toxic effects, thus specifying a therapeutic window for the application of the peptides. Therefore, these data allow us to define Aspidasept concentrations for their use in clinical studies as parenteral application.

4.
J Vis Exp ; (187)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190294

RESUMO

Life-threatening drug-induced cardiac arrhythmia is often preceded by prolonged cardiac action potentials (AP), commonly accompanied by small proarrhythmic membrane potential fluctuations. The shape and time course of the repolarizing fraction of the AP can be pivotal for the presence or absence of arrhythmia. Microelectrode arrays (MEA) allow easy access to cardiotoxic compound effects via extracellular field potentials (FP). Although a powerful and well-established tool in research and cardiac safety pharmacology, the FP waveform does not allow to infer the original AP shape due to the extracellular recording principle and the resulting intrinsic alternating current (AC) filtering. A novel device, described here, can repetitively open the membrane of cardiomyocytes cultivated on top of the MEA electrodes at multiple cultivation time points, using a highly focused nanosecond laser beam. The laser poration results in transforming the electrophysiological signal from FP to intracellular-like APs (laser-induced AP, liAP) and enables the recording of transcellular voltage deflections. This intracellular access allows a better description of the AP shape and a better and more sensitive classification of proarrhythmic potentials than regular MEA recordings. This system is a revolutionary extension to the existing electrophysiological methods, permitting accurate evaluation of cardiotoxic effect with all advantages of MEA-based recordings (easy, acute, and chronic experiments, signal propagation analysis, etc.).


Assuntos
Arritmias Cardíacas , Miócitos Cardíacos , Potenciais de Ação/fisiologia , Humanos , Lasers , Microeletrodos , Miócitos Cardíacos/fisiologia
5.
Arch Toxicol ; 95(12): 3695-3716, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628512

RESUMO

Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neurons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicological hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on the physiologically important human nAChR subtypes α7, α3ß4, and α4ß2 (high-sensitivity variant) with similar potency as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2-3 orders of magnitude lower potency. Molecular docking studies, using receptor models for the α7 and α4ß2 nAChR subtypes supported an activity of DN-IMI similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the well-established neurotoxicant nicotine by triggering α7 and several non-α7 nAChRs.


Assuntos
Imidazolinas/farmacologia , Neonicotinoides/farmacologia , Agonistas Nicotínicos/farmacologia , Nitrocompostos/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Alcenos/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Simulação de Acoplamento Molecular , Neonicotinoides/metabolismo , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrocompostos/metabolismo , Oócitos , Praguicidas/metabolismo , Praguicidas/farmacologia , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis
6.
Arch Toxicol ; 95(6): 2081-2107, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33778899

RESUMO

Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca2+ concentration ([Ca2+]i) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of α7 and non-α7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca2+]i signaling at 10-100 µM. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the α7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 µM) blunted the signaling response of nicotine. The pesticides (at 3-30 µM) also blunted the response to the non-α7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Receptores Nicotínicos/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Humanos , Neonicotinoides/administração & dosagem , Neuroblastoma/metabolismo , Técnicas de Patch-Clamp , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Arch Toxicol ; 95(1): 229-252, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33269408

RESUMO

Prediction of drug toxicity on the human nervous system still relies mainly on animal experiments. Here, we developed an alternative system allowing assessment of complex signaling in both individual human neurons and on the network level. The LUHMES cultures used for our approach can be cultured in 384-well plates with high reproducibility. We established here high-throughput quantification of free intracellular Ca2+ concentrations [Ca2+]i as broadly applicable surrogate of neuronal activity and verified the main processes by patch clamp recordings. Initially, we characterized the expression pattern of many neuronal signaling components and selected the purinergic receptors to demonstrate the applicability of the [Ca2+]i signals for quantitative characterization of agonist and antagonist responses on classical ionotropic neurotransmitter receptors. This included receptor sub-typing and the characterization of the anti-parasitic drug suramin as modulator of the cellular response to ATP. To exemplify potential studies on ion channels, we characterized voltage-gated sodium channels and their inhibition by tetrodotoxin, saxitoxin and lidocaine, as well as their opening by the plant alkaloid veratridine and the food-relevant marine biotoxin ciguatoxin. Even broader applicability of [Ca2+]i quantification as an end point was demonstrated by measurements of dopamine transporter activity based on the membrane potential-changing activity of this neurotransmitter carrier. The substrates dopamine or amphetamine triggered [Ca2+]i oscillations that were synchronized over the entire culture dish. We identified compounds that modified these oscillations by interfering with various ion channels. Thus, this new test system allows multiple types of neuronal signaling, within and between cells, to be assessed, quantified and characterized for their potential disturbance.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Técnicas de Patch-Clamp , Receptores Purinérgicos/efeitos dos fármacos , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Fatores de Tempo , Testes de Toxicidade , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
10.
Sci Rep ; 10(1): 5627, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221320

RESUMO

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.

11.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32209365

RESUMO

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Assuntos
Canal de Potássio ERG1/antagonistas & inibidores , Medição de Risco/métodos , Torsades de Pointes/induzido quimicamente , Teorema de Bayes , Simulação por Computador , Humanos , Modelos Biológicos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Segurança , Torsades de Pointes/fisiopatologia
12.
Assay Drug Dev Technol ; 14(2): 144-55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26991363

RESUMO

Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.


Assuntos
Separação Celular/instrumentação , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Haloperidol/farmacologia , Técnicas de Patch-Clamp/instrumentação , Quinidina/farmacologia , Verapamil/farmacologia , Animais , Automação , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Software , Relação Estrutura-Atividade , Fatores de Tempo
13.
Front Pharmacol ; 5: 203, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25228880

RESUMO

Blockade of the cardiac ion channel coded by human ether-à-gogo-related gene (hERG) can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark) technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.

14.
Ann Neurol ; 75(3): 382-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318194

RESUMO

OBJECTIVE: Mutations in KCNQ2 and KCNQ3, encoding the voltage-gated potassium channels KV 7.2 and KV 7.3, are known to cause benign familial neonatal seizures mainly by haploinsufficiency. Here, we set out to determine the disease mechanism of 7 de novo missense KCNQ2 mutations that were recently described in patients with a severe epileptic encephalopathy including pharmacoresistant seizures and pronounced intellectual disability. METHODS: Mutations were inserted into the KCNQ2 cDNA. Potassium currents were recorded using 2-microelectrode voltage clamping, and surface expression was analyzed by a biotinylation assay in cRNA-injected Xenopus laevis oocytes. RESULTS: We observed a clear loss of function for all mutations. Strikingly, 5 of 7 mutations exhibited a drastic dominant-negative effect on wild-type KV 7.2 or KV 7.3 subunits, either by globally reducing current amplitudes (3 pore mutations) or by a depolarizing shift of the activation curve (2 voltage sensor mutations) decreasing potassium currents at the subthreshold level at which these channels are known to critically influence neuronal firing. One mutation significantly reduced surface expression. Application of retigabine, a recently marketed KV 7 channel opener, partially reversed these effects for the majority of analyzed mutations. INTERPRETATION: The development of severe epilepsy and cognitive decline in children carrying 5 of the 7 studied KCNQ2 mutations can be related to a dominant-negative reduction of the resulting potassium current at subthreshold membrane potentials. Other factors such as genetic modifiers have to be postulated for the remaining 2 mutations. Retigabine or similar drugs may be used as a personalized therapy for this severe disease.


Assuntos
Epilepsia Neonatal Benigna/genética , Predisposição Genética para Doença/genética , Canal de Potássio KCNQ2/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Carbamatos/farmacologia , Epilepsia Neonatal Benigna/fisiopatologia , Humanos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/fisiologia , Potenciais da Membrana/genética , Mutação de Sentido Incorreto , Oócitos , Fenilenodiaminas/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Xenopus
15.
Mol Pharmacol ; 82(4): 711-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22802270

RESUMO

α-Conotoxins are subtype-selective nicotinic acetylcholine receptor (nAChR) antagonists. Although potent α3ß2 nAChR-selective α-conotoxins have been identified, currently characterized α-conotoxins show no or only weak affinity for α4ß2 nAChRs, which are, besides α7 receptors, the most abundant nAChRs in the mammalian brain. To identify the determinants responsible for this difference, we substituted selected amino acid residues in the ligand-binding domain of the α4 subunit by the corresponding residues in the α3 subunit. Two-electrode voltage clamp analysis of these mutants revealed increased affinity of α-conotoxins MII, TxIA, and [A10L]TxIA at the α4(R185I)ß2 receptor. Conversely, α-conotoxin potency was reduced at the reverse α3(I186R)ß2 mutant. Replacement of α4Arg185 by alanine, glutamate, and lysine demonstrated that a positive charge in this position prevents α-conotoxin binding. Combination of the R185I mutation with a P195Q mutation outside the binding site but in loop C completely transferred high α-conotoxin potency to the α4ß2 receptor. Molecular dynamics simulations of homology models with docked α-conotoxin indicate that these residues control access to the α-conotoxin binding site.


Assuntos
Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Feminino , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Agonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Alinhamento de Sequência , Xenopus laevis
16.
J Neurosci Methods ; 182(1): 71-7, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19505504

RESUMO

After restitution of motor function the grasping test alone is insufficient to figure out any further differences of axonal nerve regeneration of the median nerve in rats. To avoid this problem we developed a standardized electrophysiologic method for testing median nerve regeneration. Threshold, latency, compound muscle action potentials (CMAP) and velocity of neuromuscular transduction were recorded in 54 rats 20 weeks post-operatively. Animals of group 1 served as control group, no transection of the median nerve was carried out. Animals of groups 2 and 3 underwent either primary nerve coaptation or autologous nerve grafting after transection of the median nerve. To ensure validity of the method additional correlation between all parameters was investigated. Reliable electrophysiological results were observed in all animals. As expected, group 1 animals showed lowest threshold and latency and highest CMAP levels. Transection of the median nerve and additional nerve repair leads to significant increase of threshold and latency as well as reduction of CMAP. Furthermore, animals of group 3 showed higher levels for threshold and latency and reduced CMAP levels compared with animals of group 2. The grasping test alone could not demonstrate these slight differences 20 weeks post-operatively. Additionally, we observed strong correlations between threshold, latency and CMAP using the Spearman correlation ranking. We describe the usage of motor neurography as a reproducible and valid tool which should be mandatory for detailed analysis of regeneration in the rat median nerve model.


Assuntos
Técnicas de Diagnóstico Neurológico , Limiar Diferencial , Nervo Mediano/lesões , Nervo Mediano/fisiopatologia , Regeneração Nervosa/fisiologia , Condução Nervosa , Tempo de Reação , Animais , Feminino , Ratos , Ratos Wistar , Sensibilidade e Especificidade
17.
Gastroenterology ; 137(6): 2063-2073.e4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19549531

RESUMO

BACKGROUND & AIMS: Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. METHODS: Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. RESULTS: The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. CONCLUSIONS: It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Proliferação de Células , Sistema Nervoso Entérico/fisiologia , Intestinos/inervação , Neuroglia/fisiologia , Neurônios/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Embrião de Mamíferos/metabolismo , Sistema Nervoso Entérico/citologia , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Hibridização In Situ , Intestinos/embriologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares , Fatores de Tempo , Técnicas de Cultura de Tecidos
18.
Restor Neurol Neurosci ; 27(6): 651-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20042789

RESUMO

PURPOSE: The improvement of regeneration and functional recovery after peripheral nerve injury is a major challenge in neurosurgery. Although microsurgical techniques for nerve reconstruction have seen great advancements over the last years, the clinical outcome with patients is often unsatisfactory. The aim of the present study was to investigate if administration of the iron chelator Deferroxamine (DFO), can improve postoperative outcome in the rat median nerve reconstruction model. METHODS: After complete transection, the right median nerve was repaired by end-to-end neurorrhaphy. The suture site was wrapped by a 1-cm-long external jugular vein segment, either empty or filled with DFO-loaded lipid particles (Perineurin or with a vehicle (unloaded lipid particles) alone. Functional testing was carried out weekly by means of the grasping test. At the time of withdrawal, 12 weeks post-operatively, muscle tropism recovery was assessed by weighing flexor digitorum sublimis muscle that is innervated by the median nerve only. Before harvesting of the nerve specimens electrophysiological analyses were performed with measuring the latency, the threshold and the conduction velocity. Finally, the repaired nerves were withdrawn for immunocytochemistry with a neurofilament antibody and axon quantitative morphology. RESULTS: The comparison between the groups showed that intraoperative application of the DFO-loaded lipid particles at the neurorrhaphy site led to a significant increase in the density of regenerating axons as well as to an accelerated recovery of both muscle tropism and motor function. The electrophysiological results demonstrated a decrease of the threshold, a lower latency, and a higher conduction velocity in the Perineurin-treated animals. CONCLUSIONS: The results of the present study suggest that local administration of Perineurin might have a therapeutic potential for improving the postoperative outcome after microsurgical nerve reconstruction in patients.


Assuntos
Desferroxamina/farmacologia , Neuropatia Mediana/fisiopatologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Sideróforos/farmacologia , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Desferroxamina/administração & dosagem , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Feminino , Lipídeos/administração & dosagem , Lipídeos/farmacologia , Neuropatia Mediana/tratamento farmacológico , Neuropatia Mediana/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Proteínas de Neurofilamentos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Sideróforos/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...