Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(6): 6009-6014, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30644717

RESUMO

Nanowires have a wide range of applications, such as transparent electrodes, Li-ion battery anodes, light-emitting diodes, solar cells, and electronic devices. Currently, aluminum (Al) nanowires can be synthesized by thermally induced substitution of germanium (Ge) nanowires, chemical vapor deposition on other metal substrates, and template-assisted growth methods. However, there are still challenges in fabricating extremely high-purity nanowires, large-scale manufacturing, and simplifying the synthesis process and conditions. Here, we report for the first time that single-crystal Al nanowires can be one-step, in situ synthesized on a reduced graphene oxide (RGO) substrate on a large scale without using any catalysts. Through a simple high temperature treatment process, commercial micro-sized Al powders in RGO film were transformed into a single-crystal Al nanowire with an average length of 1.2 µm and an average diameter of 18 nm. The possible formation mechanism of the single-crystal Al nanowires is proposed as follows: hot aluminum atoms eject from the pristine aluminum/alumina core/shell structure of Al powders when they build up enough energy from the thermal stress under high temperature and confined space conditions, which is supported by both experimental and computational results. The method introduced here can be extended to allow the synthesis of one-dimensional highly reactive materials, like alkali metal nanowires, in confined spaces.

2.
Nano Lett ; 17(9): 5817-5822, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28771364

RESUMO

The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co2B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co2B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS2) and cobalt oxide (Co3O4) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.

3.
Nano Lett ; 16(9): 5553-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27505433

RESUMO

High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

4.
Nat Commun ; 7: 12332, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515900

RESUMO

Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material.

5.
Nano Lett ; 16(6): 3616-23, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27148884

RESUMO

Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 µm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...