Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neurol Genet ; 10(2): e200144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38715656

RESUMO

Background and Objectives: Micro-RNAs (miRNAs) are critical for regulating the expression of genes in multiple neurodegenerative diseases, but miRNAs have not been investigated in spinocerebellar ataxia type 2 (SCA2). SCA2, a dominantly inherited progressive neurodegenerative polyglutamine (polyQ) disease, is caused by a CAG repeat expansion in the ataxin-2 (ATXN2) gene. In this study, we determined miRNA transcriptomes in SCA2-BAC-ATXN2[Q72] transgenic mice. Methods: We assessed the expression of miRNAs in SCA2 transgenic mouse cerebella using the HiSeq Illumina sequencer. We used the miRNA target filter tool in Qiagen Ingenuity Pathway Analysis (IPA) to identify target genes of differentially expressed miRNAs (DEmiRs) within in the SCA2 mouse transcriptomes and then performed pathway analyses. Results: Our analysis revealed significant changes in the expression levels of multiple miRNAs in mice with SCA2. We identified 81 DEmiRs in mice with SCA2, with 52 miRNAs upregulated and 29 miRNAs downregulated after onset of rotarod deficit. Subsequent IPA processing enabled us to establish connections between these DEmiRs and specific biological regulatory functions. Furthermore, by using the IPA miRNA target filter, we identified target genes of DEmiRs in the SCA2-BAC-ATXN2[Q72] transcriptome data set and demonstrated their significant impact on several biological functional and disease pathways. Discussion: Our study establishes the role of both DEmiRs and their targets in SCA2 pathogenesis. By expressing mutant ATXN2 under the control of its endogenous regulatory elements in the SCA2-BAC-ATXN2[Q72] mouse model, we identified a set of DEmiRs that are shared across multiple neurodegenerative diseases including other SCAs, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS). There was a significant overlap of both DEmiRs and their targets of BAC-ATXN2[Q72] transcriptomes in dysregulated pathways that characterize SCA2. This observation also extended to dysregulated pathways in ALS, AD, and PD. DEmiRs identified in this study may represent therapeutic targets for neurodegeneration or lead to biomarkers for characterizing various neurodegenerative diseases.

2.
Hum Mol Genet ; 32(10): 1647-1659, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621975

RESUMO

The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Ratos , Camundongos , Animais , Células de Purkinje , Ataxia Cerebelar/genética , Ataxia/genética , Mutação , Deficiência Intelectual/genética
3.
Ann Neurol ; 93(2): 398-416, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36151701

RESUMO

OBJECTIVE: The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy. Our objective was to determine the mechanism of mTOR regulation by STAU1. METHODS: We determined STAU1 abundance with disease- and chemical-induced cellular stressors in patient cells and animal models. We also used RNA-binding assays to contextualize STAU1 interaction with MTOR mRNA. RESULTS: STAU1 and mTOR were overabundant in bacterial artificial chromosome (BAC)-C9ORF72, ATXN2Q127 , and Thy1-TDP-43 transgenic mouse models. Reducing STAU1 levels in these mice normalized mTOR levels and activity and autophagy-related marker proteins. We also saw increased STAU1 levels in HEK293 cells transfected to express C9ORF72-relevant dipeptide repeats (DPRs). Conversely, DPR accumulations were not observed in cells treated by STAU1 RNA interference (RNAi). Overexpression of STAU1 in HEK293 cells increased mTOR levels through direct MTOR mRNA interaction, activating downstream targets and impairing autophagic flux. Targeting mTOR by rapamycin or RNAi normalized STAU1 abundance in an SCA2 cellular model. INTERPRETATION: STAU1 interaction with mTOR drives its hyperactivation and inhibits autophagic flux in multiple models of neurodegeneration. Staufen, therefore, constitutes a novel target to modulate mTOR activity and autophagy, and for the treatment of neurodegenerative diseases. ANN NEUROL 2023;93:398-416.


Assuntos
Ataxias Espinocerebelares , Serina-Treonina Quinases TOR , Humanos , Camundongos , Animais , Proteína C9orf72 , Células HEK293 , Serina-Treonina Quinases TOR/metabolismo , Camundongos Transgênicos , Autofagia , RNA Mensageiro , Sirolimo , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a RNA/metabolismo
4.
J Biol Chem ; 298(8): 102228, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787375

RESUMO

CAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription. We screened 428,759 compounds in a multiplexed assay using an ATXN2-luciferase reporter in human embryonic kidney 293 (HEK-293) cells and identified a diverse set of compounds capable of lowering ATXN2 transcription. We observed dose-dependent reductions of endogenous ATXN2 in HEK-293 cells treated with procillaridin A, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), and heat shock protein 990 (HSP990), known inhibitors of HSP90 and Na+/K+-ATPases. Furthermore, HEK-293 cells expressing polyglutamine-expanded ATXN2-Q58 treated with 17-DMAG had minimally detectable ATXN2, as well as normalized markers of autophagy and endoplasmic reticulum stress, including STAU1 (Staufen 1), molecular target of rapamycin, p62, LC3-II (microtubule-associated protein 1A/1B-light chain 3II), CHOP (C/EBP homologous protein), and phospho-eIF2α (eukaryotic initiation factor 2α). Finally, bacterial artificial chromosome ATXN2-Q22 mice treated with 17-DMAG or HSP990 exhibited highly reduced ATXN2 protein abundance in the cerebellum. Taken together, our study demonstrates inhibition of HSP90 or Na+/K+-ATPases as potentially effective therapeutic strategies for treating SCA2 and ALS.


Assuntos
Esclerose Lateral Amiotrófica , Ataxias Espinocerebelares , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Ataxina-2/genética , Cerebelo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas de Ligação a RNA/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética
5.
J Biol Chem ; 297(4): 101191, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520759

RESUMO

Accumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein. We found that A-443654 normalized levels of both SNCA mRNA and α-synuclein monomers and oligomers in ATXN2-Q58 cells. A-443654 also normalized levels of α-synuclein in fibroblasts and iPSC-derived dopaminergic neurons from a patient carrying a triplication of the SNCA gene. Analysis of autophagy and endoplasmic reticulum stress markers showed that A-443654 successfully prevented α-synuclein toxicity and restored cell function in ATXN2-Q58 cells, normalizing the levels of mTOR, LC3-II, p62, STAU1, BiP, and CHOP. A-443654 also decreased the expression of DCLK1, an inhibitor of α-synuclein lysosomal degradation. Our study identifies A-443654 and AKT inhibition as a potential strategy for reducing SNCA expression and treating Parkinson's disease pathology.


Assuntos
Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , alfa-Sinucleína/biossíntese , Células HEK293 , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , alfa-Sinucleína/genética
6.
PLoS One ; 16(8): e0256366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383855

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0136930.].

7.
Ann Neurol ; 89(6): 1114-1128, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33745139

RESUMO

OBJECTIVE: Mutations in the ATXN2 gene (CAG expansions ≥32 repeats) can be a rare cause of Parkinson's disease and amyotrophic lateral sclerosis (ALS). We recently reported that the stress granule (SG) protein Staufen1 (STAU1) was overabundant in neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2) patient cells, animal models, and ALS-TDP-43 fibroblasts, and provided a link between SG formation and autophagy. We aimed to test if STAU1 overabundance has a role in the pathogenesis of other neurodegenerative diseases. METHODS: With multiple neurodegenerative patient-derived cell models, animal models, and human postmortem ALS tissue, we evaluate STAU1 function using biochemical and immunohistological analyses. RESULTS: We demonstrate STAU1 overabundance and increased total and phosphorylated mammalian target of rapamycin (mTOR) in fibroblast cells from patients with ALS with mutations in TDP-43, patients with dementia with PSEN1 mutations, a patient with parkinsonism with MAPT mutation, Huntington's disease (HD) mutations, and SCA2 mutations. Increased STAU1 levels and mTOR activity were seen in human ALS spinal cord tissues as well as in animal models. Changes in STAU1 and mTOR protein levels were post-transcriptional. Exogenous expression of STAU1 in wildtype cells was sufficient to activate mTOR and downstream targets and form SGs. Targeting STAU1 by RNAi normalized mTOR, suggesting a potential role for therapy in diseases associated with STAU1 overabundance. INTERPRETATION: STAU1 overabundance in neurodegeneration is a common phenomenon associated with hyperactive mTOR. Targeting STAU1 with ASOs or miRNA viral vectors may represent a novel, efficacious therapy for neurodegenerative diseases characterized by overabundant STAU1. ANN NEUROL 2021;89:1114-1128.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
8.
Genet Med ; 23(4): 767-776, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442025

RESUMO

PURPOSE: Newborn screening disorders increasingly require genetic variant analysis as part of second-tier or confirmatory testing. Sanger sequencing and gene-specific next-generation sequencing (NGS)-based tests, the current methods of choice, are costly and lack scalability when expanding to new conditions. We describe a scalable, exome sequencing-based NGS pipeline with a priori analysis restriction that can be universally applied to any NBS disorder. METHODS: De-identified abnormal newborn screening specimens representing severe combined immune deficiency (SCID), cystic fibrosis (CF), VLCAD deficiency, metachromatic leukodystrophy (MLD), and in silico sequence read data sets were used to validate the pipeline. To support interpretation and clinical decision-making within the bioinformatics pipeline, variants from multiple databases were curated and validated. RESULTS: CFTR variant panel analysis correctly identified all variants. Concordance compared with diagnostic testing results for targeted gene analysis was between 78.6% and 100%. Validation of the bioinformatics pipeline with in silico data sets revealed a 100% detection rate. Varying degrees of overlap were observed between ClinVar and other databases ranging from 3% to 65%. Data normalization revealed that 11% of variants across the databases required manual curation. CONCLUSION: This pipeline allows for restriction of analysis to variants within a single gene or multiple genes, and can be readily expanded to full exome analysis if clinically indicated and parental consent is granted.


Assuntos
Exoma , Triagem Neonatal , Exoma/genética , Estudos de Viabilidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Sequenciamento do Exoma
10.
Genet Med ; 23(3): 555-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33214709

RESUMO

PURPOSE: Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulfatase A (ARSA), which results in the accumulation of sulfatides. Newborn screening for MLD may be considered in the future as innovative treatments are advancing. We carried out a research study to assess the feasibility of screening MLD using dried blood spots (DBS) from de-identified newborns. METHODS: To minimize the false-positive rate, a two-tier screening algorithm was designed. The primary test was to quantify C16:0-sulfatide in DBS by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The screening cutoff was established based on the results from 15 MLD newborns to achieve 100% sensitivity. The secondary test was to measure the ARSA activity in DBS from newborns with abnormal C16:0-sulfatide levels. Only newborns that displayed both abnormal C16:0-sulfatide abundance and ARSA activity were considered screen positives. RESULTS: A total of 27,335 newborns were screened using this two-tier algorithm, and 2 high-risk cases were identified. ARSA gene sequencing identified these two high-risk subjects to be a MLD-affected patient and a heterozygote. CONCLUSION: Our study demonstrates that newborn screening for MLD is highly feasible in a real-world scenario with near 100% assay specificity.


Assuntos
Leucodistrofia Metacromática , Cerebrosídeo Sulfatase/genética , Cromatografia Líquida , Humanos , Recém-Nascido , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Triagem Neonatal , Espectrometria de Massas em Tandem
11.
Hum Mol Genet ; 29(19): 3249-3265, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32964235

RESUMO

Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.


Assuntos
Ataxina-1/metabolismo , Ativação do Canal Iônico , Neurônios/patologia , Células de Purkinje/patologia , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/patologia , Animais , Ataxina-1/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Células de Purkinje/metabolismo , Proteínas Repressoras/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
12.
Cell Death Differ ; 27(10): 2942-2951, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32415281

RESUMO

Staufen-1 (STAU1) is an RNA-binding protein that becomes highly overabundant in numerous neurodegenerative disease models, including those carrying mutations in presenilin1 (PSEN1), microtubule-associated protein tau (MAPT), huntingtin (HTT), TAR DNA-binding protein-43 gene (TARDBP), or C9orf72. We previously reported that elevations in STAU1 determine autophagy defects and its knockdown is protective in models of several neurodegenerative diseases. Additional functional consequences of STAU1 overabundance, however, have not been investigated. We studied the role of STAU1 in the chronic activation of the unfolded protein response (UPR), a common feature among neurodegenerative diseases and often directly associated with neuronal death. Here we report that STAU1 is a novel modulator of the UPR, and is required for apoptosis induced by activation of the PERK-CHOP pathway. STAU1 levels increased in response to multiple endoplasmic reticulum (ER) stressors, and exogenous expression of STAU1 was sufficient to cause apoptosis through the PERK-CHOP pathway of the UPR. Cortical neurons and skin fibroblasts derived from Stau1-/- mice showed reduced UPR and apoptosis when challenged with thapsigargin. In fibroblasts from individuals with SCA2 or with ALS-causing TDP-43 and C9ORF72 mutations, we found highly increased STAU1 and CHOP levels in basal conditions, and STAU1 knockdown restored CHOP levels to normal. Taken together, these results show that STAU1 overabundance reduces cellular resistance to ER stress and precipitates apoptosis.


Assuntos
Estresse do Retículo Endoplasmático , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Autofagia , Fibroblastos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios , Resposta a Proteínas não Dobradas
13.
Hum Mol Genet ; 29(10): 1658-1672, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32307524

RESUMO

The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ataxina-2/genética , Proteínas de Ligação a DNA/genética , Ataxias Espinocerebelares/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Ataxina-2/antagonistas & inibidores , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios Motores/patologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Ataxias Espinocerebelares/patologia , Transcriptoma/genética
14.
Nat Commun ; 9(1): 3648, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194296

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of polyglutamine tract in the ATXN2 protein. We identified Staufen1 (STAU1) as an interactor of ATXN2, and showed elevation in cells from SCA2 patients, amyotrophic lateral sclerosis (ALS) patients, and in SCA2 mouse models. We demonstrated recruitment of STAU1 to mutant ATXN2 aggregates in brain tissue from patients with SCA2 human brain and in an SCA2 mouse model, and association of STAU1 elevation with dysregulation of SCA2-related transcript abundances. Targeting STAU1 in vitro by RNAi restored PCP2 transcript levels and lowering mutant ATXN2 also normalized STAU1 levels. Reduction of Stau1 in vivo improved motor behavior in an SCA2 mouse model, normalized the levels of several SCA2-related proteins, and reduced aggregation of polyglutamine-expanded ATXN2. These findings suggest a function for STAU1 in aberrant RNA metabolism associated with ATXN2 mutation, suggesting STAU1 is a possible novel therapeutic target for SCA2.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ataxina-2/metabolismo , Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos Knockout , Cultura Primária de Células
15.
Hum Mol Genet ; 26(16): 3069-3080, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28525545

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the ATXN2 gene. The repeat resides in an encoded region of the gene resulting in polyglutamine (polyQ) expansion which has been assumed to result in gain of function, predominantly, for the ATXN2 protein. We evaluated temporal cerebellar expression profiles by RNA sequencing of ATXN2Q127 mice versus wild-type (WT) littermates. ATXN2Q127 mice are characterized by a progressive motor phenotype onset, and have progressive cerebellar molecular and neurophysiological (Purkinje cell firing frequency) phenotypes. Our analysis revealed previously uncharacterized early and progressive abnormal patterning of cerebellar gene expression. Weighted Gene Coexpression Network Analysis revealed four gene modules that were significantly correlated with disease status, composed primarily of genes associated with GTPase signaling, calcium signaling and cell death. Of these genes, few overlapped with differentially expressed cerebellar genes that we identified in Atxn2-/- knockout mice versus WT littermates, suggesting that loss-of-function is not a significant component of disease pathology. We conclude that SCA2 is a disease characterized by gain of function for ATXN2.


Assuntos
Redes Reguladoras de Genes , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Animais , Ataxina-2/genética , Ataxina-2/metabolismo , Ataxinas/genética , Sequência de Bases , Cerebelo/metabolismo , Modelos Animais de Doenças , Mutação com Ganho de Função , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Células de Purkinje/metabolismo , Análise de Sequência de RNA , Repetições de Trinucleotídeos
16.
Nature ; 544(7650): 362-366, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28405024

RESUMO

There are no disease-modifying treatments for adult human neurodegenerative diseases. Here we test RNA-targeted therapies in two mouse models of spinocerebellar ataxia type 2 (SCA2), an autosomal dominant polyglutamine disease. Both models recreate the progressive adult-onset dysfunction and degeneration of a neuronal network that are seen in patients, including decreased firing frequency of cerebellar Purkinje cells and a decline in motor function. We developed a potential therapy directed at the ATXN2 gene by screening 152 antisense oligonucleotides (ASOs). The most promising oligonucleotide, ASO7, downregulated ATXN2 mRNA and protein, which resulted in delayed onset of the SCA2 phenotype. After delivery by intracerebroventricular injection to ATXN2-Q127 mice, ASO7 localized to Purkinje cells, reduced cerebellar ATXN2 expression below 75% for more than 10 weeks without microglial activation, and reduced the levels of cerebellar ATXN2. Treatment of symptomatic mice with ASO7 improved motor function compared to saline-treated mice. ASO7 had a similar effect in the BAC-Q72 SCA2 mouse model, and in both mouse models it normalized protein levels of several SCA2-related proteins expressed in Purkinje cells, including Rgs8, Pcp2, Pcp4, Homer3, Cep76 and Fam107b. Notably, the firing frequency of Purkinje cells returned to normal even when treatment was initiated more than 12 weeks after the onset of the motor phenotype in BAC-Q72 mice. These findings support ASOs as a promising approach for treating some human neurodegenerative diseases.


Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Potenciais de Ação , Animais , Ataxina-2/deficiência , Ataxina-2/genética , Ataxina-2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Movimento , Fenótipo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Teste de Desempenho do Rota-Rod , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia
17.
Sci Rep ; 6: 30999, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484195

RESUMO

Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo , Proteínas de Transporte/fisiologia , Proteínas com Domínio LIM/genética , Músculo Esquelético/patologia , Distrofia Miotônica/patologia , Animais , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Intolerância à Glucose , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Miotônica/etiologia , Distrofia Miotônica/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA
18.
Dis Model Mech ; 9(5): 553-62, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013529

RESUMO

The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca(2+) transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3(R35C) function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Mutação/genética , Tremor/genética , Tremor/patologia , Animais , Comportamento Animal , Cálcio/metabolismo , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Teste de Complementação Genética , Humanos , Masculino , Proteínas Mutantes/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células de Purkinje/patologia , Ratos Endogâmicos WF , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Expansão das Repetições de Trinucleotídeos/genética
19.
Biol Open ; 5(3): 300-10, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26892236

RESUMO

We developed an adenoviral vector, in which Yamanaka's four reprogramming factors (RFs) were controlled by individual CMV promoters in a single cassette (Ad-SOcMK). This permitted coordinated expression of RFs (SOX2, OCT3/4, c-MYC and KLF4) in a cell for a transient period of time, synchronizing the reprogramming process with the majority of transduced cells assuming induced pluripotent stem cell (iPSC)-like characteristics as early as three days post-transduction. These reprogrammed cells resembled human embryonic stem cells (ESCs) with regard to morphology, biomarker expression, and could be differentiated into cells of the germ layers in vitro and in vivo. These iPSC-like cells, however, failed to expand into larger iPSC colonies. The short and synchronized reprogramming process allowed us to study global transcription changes within short time intervals. Weighted gene co-expression network analysis (WGCNA) identified sixteen large gene co-expression modules, each including members of gene ontology categories involved in cell differentiation and development. In particular, the brown module contained a significant number of ESC marker genes, whereas the turquoise module contained cell-cycle-related genes that were downregulated in contrast to upregulation in human ESCs. Strong coordinated expression of all four RFs via adenoviral transduction may constrain stochastic processes and lead to silencing of genes important for cellular proliferation.

20.
EBioMedicine ; 2(9): 1034-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26501102

RESUMO

Loss of Muscleblind-like 1 (Mbnl1) is known to alter Clc-1 splicing to result in myotonia. Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) mice, depleted of Mbnl1 and Mbnl3, demonstrate a profound enhancement of myotonia and an increase in the number of muscle fibers with very low Clc-1 currents, where gClmax values approach ~ 1 mS/cm(2), with the absence of a further enhancement in Clc-1 splice errors, alterations in polyA site selection or Clc-1 localization. Significantly, Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) muscles demonstrate an aberrant accumulation of Clc-1 RNA on monosomes and on the first polysomes. Mbnl1 and Mbnl3 bind Clc-1 RNA and both proteins bind Hsp70 and eEF1A, with these associations being reduced in the presence of RNA. Thus binding of Mbnl1 and Mbnl3 to Clc-1 mRNA engaged with ribosomes can facilitate an increase in the local concentration of Hsp70 and eEF1A to assist Clc-1 translation. Dual depletion of Mbnl1 and Mbnl3 therefore initiates both Clc-1 splice errors and translation defects to synergistically enhance myotonia. As the HSA(LR) model for myotonic dystrophy (DM1) shows similar Clc-1 defects, this study demonstrates that both splice errors and translation defects are required for DM1 pathology to manifest. RESEARCH IN CONTEXT: Research in context: Myotonic Dystrophy type 1 (DM1) is a dominant disorder resulting from the expression of expanded CUG repeat RNA, which aberrantly sequesters and inactivates the muscleblind-like (MBNL) family of proteins. In mice, inactivation of Mbnl1 is known to alter Clc-1 splicing to result in myotonia. We demonstrate that concurrent depletion of Mbnl1 and Mbnl3 results in a synergistic enhancement of myotonia, with an increase in muscle fibers showing low chloride currents. The observed synergism results from the aberrant accumulation of Clc-1 mRNA on monosomes and the first polysomes. This translation error reflects the ability of Mbnl1 and Mbnl3 to act as adaptors that recruit Hsp70 and eEF1A to the Clc-1 mRNA engaged with ribosomes, to facilitate translation. Thus our study demonstrates that Clc-1 RNA translation defects work coordinately with Clc-1 splice errors to synergistically enhance myotonia in mice lacking Mbnl1 and Mbnl3.


Assuntos
Proteínas de Transporte/genética , Canais de Cloreto/genética , Proteínas de Ligação a DNA/genética , Miotonia/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Canais de Cloreto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Immunoblotting , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miotonia/metabolismo , Miotonia/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/fisiopatologia , Fator 1 de Elongação de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...