Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37468090

RESUMO

The biological consequences of catch-and-release angling have been studied for decades, yet little is known about the compounding effects of repeated recreational fisheries recaptures on the physiology and behaviour of angled fish. Using heart rate biologgers and behavioural assays, this study investigated the physiological and behavioural consequences of multiple simulated angling events (i.e., repeated stressors) on female steelhead (Oncorhynchus mykiss), under current (6 °C) and future (11 °C) water temperature scenarios. While steelhead in the warmer water temperature scenario demonstrated alterations in cardiac function (e.g., increases in maximum heart rate and scope of heart rate) and evidence of behavioural impairments (e.g., decreases in chase activity and landing time) over the course of two simulated angling events, cold water treated fish had negligible change. Fish subjected to two simulated angling events under warm water temperature conditions tended to demonstrate an increase in recovery time and scope for heart rate, and a decrease in resting heart rate. A second experiment was conducted to test for sex-specific differences in the heart rate response of steelhead subjected to an increase in water temperature. Females demonstrated a higher scope for heart rate when compared to males during the event and during recovery. More work is needed to better understand the interaction between multiple angling events and recovery from these events at various water temperatures, and the biological basis for sex-specific differences in cardiac function and response to challenges. This study contributes to a growing body of evidence on the effects of repeated stressors on wild fish.


Assuntos
Oncorhynchus mykiss , Masculino , Feminino , Animais , Temperatura , Água , Pesqueiros , Metabolismo Energético
2.
Oecologia ; 202(2): 353-368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291257

RESUMO

Research from terrestrial communities shows that diminished predation risk is a principal driver of heterospecific grouping behavior, with foraging ecology predicting the roles that species play in groups, as more vulnerable foragers preferentially join more vigilant ones from whom they can benefit. Meanwhile, field studies examining the adaptive significance of heterospecific shoaling among marine fish have focused disproportionately on feeding advantages such as scrounging or prey-flushing. Juvenile bonefish (Albula vulpes) occur almost exclusively among mojarras (Eucinostomus spp.) and even elect to join them over conspecifics, suggesting they benefit from doing so. We evaluated the roles of risk-related and food-related factors in motivating this pattern of affiliation, estimating: (1) the relative levels of risk associated with each species' search and prey capture activities, via behavioral vulnerability traits discerned from in situ video of heterospecific shoals, and (2) resource use redundancy, using stable isotopes (δ13C, δ15N, and δ34S) to quantify niche overlap. Across four distinct metrics, bonefish behaviors implied a markedly greater level of risk than those of mojarras, typified by higher activity levels and a reduced capacity for overt vigilance; consistent with expectations if their association conformed to patterns of joining observed in terrestrial habitats. Resource use overlap inferred from stable isotopes was low, indicating that the two species partitioned resources and making it unlikely that bonefish derived substantive food-related benefits. Collectively, these findings suggest that the attraction of juvenile bonefish to mojarras is motivated primarily by antipredator advantages, which may include the exploitation of risk-related social cues.


Assuntos
Ecossistema , Peixes , Animais , Comportamento Predatório , Isótopos , Ecologia
3.
Rev Fish Biol Fish ; : 1-17, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37360579

RESUMO

The global COVID-19 pandemic resulted in many jurisdictions implementing orders restricting the movements of people to inhibit virus transmission, with recreational angling often either not permitted or access to fisheries and/or related infrastructure being prevented. Following the lifting of restrictions, initial angler surveys and licence sales suggested increased participation and effort, and altered angler demographics, but with evidence remaining limited. Here, we overcome this evidence gap by identifying temporal changes in angling interest, licence sales, and angling effort in world regions by comparing data in the 'pre-pandemic' (up to and including 2019); 'acute pandemic' (2020) and 'COVID-acclimated' (2021) periods. We then identified how changes can inform the development of more resilient and sustainable recreational fisheries. Interest in angling (measured here as angling-related internet search term volumes) increased substantially in all regions during 2020. Patterns in licence sales revealed marked increases in some countries during 2020 but not in others. Where licence sales increased, this was rarely sustained in 2021; where there were declines, these related to fewer tourist anglers due to movement restrictions. Data from most countries indicated a younger demographic of people who participated in angling in 2020, including in urban areas, but this was not sustained in 2021. These short-lived changes in recreational angling indicate efforts to retain younger anglers could increase overall participation levels, where efforts can target education in appropriate angling practices and create more urban angling opportunities. These efforts would then provide recreational fisheries with greater resilience to cope with future global crises, including facilitating the ability of people to access angling opportunities during periods of high societal stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-023-09784-5.

4.
Environ Biol Fishes ; 106(2): 117-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36686288

RESUMO

Coastal marine fisheries and the habitats that support them are under extensive and increasing pressures from numerous anthropogenic stressors that occur at multiple spatial and temporal scales and often intersect in unexpected ways. Frequently, the scales at which these fisheries are managed do not match the scales of the stressors, much less the geographic scale of species biology. In general, fishery management is ill prepared to address these stressors, as underscored by the continuing lack of integration of fisheries and habitat management. However, research of these fisheries is increasingly being conducted at spatial and temporal scales that incorporate biology and ecological connectivity of target species, with growing attention to the foundational role of habitat. These efforts are also increasingly engaging stakeholders and rights holders in research, education, and conservation. This multi-method approach is essential for addressing pressing conservation challenges that are common to flats ecosystems. Flats fisheries occur in the shallow, coastal habitat mosaic that supports fish species that are accessible to and desirable to target by recreational fishers. Because these species rely upon coastal habitats, the anthropogenic stressors can be especially intense-habitat alteration (loss and degradation) and water quality declines are being exacerbated by climate change and increasing direct human impacts (e.g., fishing effort, boat traffic, depredation, pollution). The connections necessary for effective flats conservation are of many modes and include ontogenetic habitat connectivity; connections between stressors and impacts to fishes; connections between research and management, such as research informing spawning area protections; and engagement of stakeholders and rights holders in research, education, and management. The articles included in this Special Issue build upon a growing literature that is filling knowledge gaps for flats fishes and their habitats and increasingly providing the evidence to inform resource management. Indeed, numerous articles in this issue propose or summarize direct application of research findings to management with a focus on current and future conservation challenges. As with many other fisheries, a revised approach to management and conservation is needed in the Anthropocene.

5.
Physiol Biochem Zool ; 96(1): 17-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36626841

RESUMO

AbstractLocomotion is a defining characteristic that can dictate many aspects of an organism's life history in the pursuit of maximizing fitness, including escaping predators, capturing prey, and transitioning between habitats. Exhaustive exercise can have negative consequences for both short-term and long-term energetics and life history trade-offs, influencing fish survival and reproduction. Studies of swimming performance and exhaustive exercise in fish are often conducted on individual species, but few multispecies analyses exist and even fewer in field settings. In fish, swimming performance and exercise have historically been studied in the laboratory using swim tunnels, but an increasing body of work in recreational fisheries science provides a novel way to examine swimming capacity and exhaustion. Using fight time, the time it takes for a hooked fish to be landed on rod and reel fishing gear, as an opportunistic proxy for fish exhaustion, a multispecies meta-analysis of data from studies on recreational fisheries was conducted to elucidate the factors that most influence capacity for exhaustive exercise. Data from 39 species of freshwater and marine fish were aggregated, and negative binomial mixed effects models as well as phylogenetic least squares regression were used to identify the factors that most influenced exhaustive exercise in the field. Fish total length, aspect ratio of the caudal fin, and body form were significant factors in explaining the capacity for exhaustive exercise. Large migratory fish with high aspect ratios were able to fight, and therefore exercise, the longest. These results illustrate that body form and physiology are both deeply intertwined to inform function across fish species and point to angling fight time as a useful approximation of fish swimming capabilities that can be further developed for understanding the limits of fish exercise physiology.


Assuntos
Ecossistema , Natação , Animais , Natação/fisiologia , Filogenia , Anaerobiose
6.
Environ Biol Fishes ; 106(2): 381-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36118617

RESUMO

Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.

7.
Conserv Physiol ; 10(1): coac070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540067

RESUMO

Understanding the factors that contribute to fish impairment and survival from angling events is essential to guide best angling practices for catch-and-release (C&R) recreational fisheries. Complex interactions often exist between angler behaviour, environmental conditions, and fish characteristics that ultimately determine biological outcomes for fish. Yet, few studies focus on identifying biologically relevant thresholds. We therefore examined the effects of water temperature, air exposure and fish size on reflex impairment and mortality in brook trout Salvelinus fontinalis exposed to experimental and simulated angling stressors (n = 337). Using conditional inference trees, we identified interactions among these factors as well as threshold values within them that determine brook trout reflex impairment as an indicator of whole animal stress. Specifically, longer air exposure times (>30 sec) and warmer temperatures (>19.5°C) had a synergistic effect leading to higher reflex impairment scores. Further, larger fish (>328 mm) were more sensitive to air exposure durations >10 sec. Of the reflex impairment measures, loss of equilibrium and time to regain equilibrium were strongly and moderately associated with brook trout mortality (18-24 h monitoring), although mortality rates were generally low (6%). These findings support previous research that has established strong links between these reflex impairment measures and fish health outcomes in other species. They also highlight the important interactions among air exposure duration, water temperature and fish size that determine impairment in brook trout, providing specific thresholds to guide best angling practices for C&R fisheries. This approach may be widely applicable to generate similar thresholds that can be encouraged by regulators and adopted by anglers for other common C&R fishes.

8.
PLoS One ; 17(10): e0276528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264943

RESUMO

Biophysical models are a powerful tool for assessing population connectivity of marine organisms that broadcast spawn. Albula vulpes is a species of bonefish that is an economically and culturally important sportfish found throughout the Caribbean and that exhibits genetic connectivity among geographically distant populations. We created ontogenetically relevant biophysical models for bonefish larval dispersal based upon multiple observed spawning events in Abaco, The Bahamas in 2013, 2018, and 2019. Biological parameterizations were informed through active acoustic telemetry, CTD casts, captive larval rearing, and field collections of related albulids and anguillids. Ocean conditions were derived from the Regional Navy Coastal Ocean Model American Seas dataset. Each spawning event was simulated 100 times using the program Ichthyop. Ten-thousand particles were released at observed and putative spawning locations and were allowed to disperse for the full 71-day pelagic larval duration for A. vulpes. Settlement densities in defined settlement zones were assessed along with interactions with oceanographic features. The prevailing Northern dispersal paradigm exhibited strong connectivity with Grand Bahama, the Berry Islands, Andros, and self-recruitment to lower and upper Abaco. Ephemeral gyres and flow direction within Northwest and Northeast Providence Channels were shown to have important roles in larval retention to the Bahamian Archipelago. Larval development environments for larvae settling upon different islands showed few differences and dispersal was closely associated with the thermocline. Settlement patterns informed the suggestion for expansion of conservation parks in Grand Bahama, Abaco, and Andros, and the creation of a parks in Eleuthera and the Berry Islands to protect fisheries. Further observation of spawning events and the creation of biophysical models will help to maximize protection for bonefish spawning locations and nursery habitat, and may help to predict year-class strength for bonefish stocks throughout the Greater Caribbean.


Assuntos
Pesqueiros , Peixes , Animais , Larva , Bahamas , Dinâmica Populacional , Oceanos e Mares
9.
J Fish Biol ; 101(4): 756-779, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788929

RESUMO

Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.


Assuntos
Ecologia , Ecossistema , Animais , Humanos , Peixes/fisiologia , Cadeia Alimentar , Água Doce , Conservação dos Recursos Naturais
10.
J Fish Biol ; 101(1): 4-12, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35439327

RESUMO

There is growing evidence that bioenergetics can explain relationships between environmental conditions and fish behaviour, distribution and fitness. Fish energetic needs increase predictably with water temperature, but metabolic performance (i.e., aerobic scope) exhibits varied relationships, and there is debate about its role in shaping fish ecology. Here we present an energetics-performance framework, which posits that ecological context determines whether energy expenditure or metabolic performance influence fish behaviour and fitness. From this framework, we present testable predictions about how temperature-driven variability in energetic demands and metabolic performance interact with ecological conditions to influence fish behaviour, distribution and fitness. Specifically, factors such as prey availability and the spatial distributions of prey and predators may alter fish temperature selection relative to metabolic and energetic optima. Furthermore, metabolic flexibility is a key determinant of how fish will respond to changing conditions, such as those predicted with climate change. With few exceptions, these predictions have rarely been tested in the wild due partly to difficulties in remotely measuring aspects of fish energetics. However, with recent advances in technology and measurement techniques, we now have a better capacity to measure bioenergetics parameters in the wild. Testing these predictions will provide a more mechanistic understanding of how ecological factors affect fish fitness and population dynamics, advancing our knowledge of how species and ecosystems will respond to rapidly changing environments.


Assuntos
Ecossistema , Peixes , Animais , Mudança Climática , Metabolismo Energético , Peixes/metabolismo , Temperatura
11.
Ecol Appl ; 32(5): e2584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333436

RESUMO

Interspecific interactions can play an essential role in shaping wildlife populations and communities. To date, assessments of interspecific interactions, and more specifically predator-prey dynamics, in aquatic systems over broad spatial and temporal scales (i.e., hundreds of kilometers and multiple years) are rare due to constraints on our abilities to measure effectively at those scales. We applied new methods to identify space-use overlap and potential predation risk to Atlantic tarpon (Megalops atlanticus) and permit (Trachinotus falcatus) from two known predators, great hammerhead (Sphyrna mokarran) and bull (Carcharhinus leucas) sharks, over a 3-year period using acoustic telemetry in the coastal region of the Florida Keys (USA). By examining spatiotemporal overlap, as well as the timing and order of arrival at specific locations compared to random chance, we show that potential predation risk from great hammerhead and bull sharks to Atlantic tarpon and permit are heterogeneous across the Florida Keys. Additionally, we find that predator encounter rates with these game fishes are elevated at specific locations and times, including a prespawning aggregation site in the case of Atlantic tarpon. Further, using machine learning algorithms, we identify environmental variability in overlap between predators and their potential prey, including location, habitat, time of year, lunar cycle, depth, and water temperature. These predator-prey landscapes provide insights into fundamental ecosystem function and biological conservation, especially in the context of emerging fishery-related depredation issues in coastal marine ecosystems.


Assuntos
Comportamento Predatório , Tubarões , Animais , Ecossistema , Peixes , Florida
12.
Rev Fish Biol Fish ; 31(2): 253-288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642705

RESUMO

Technology that is developed for or adopted by the recreational fisheries sector (e.g., anglers and the recreational fishing industry) has led to rapid and dramatic changes in how recreational anglers interact with fisheries resources. From improvements in finding and catching fish to emulating their natural prey and accessing previously inaccessible waters, to anglers sharing their exploits with others, technology is completely changing all aspects of recreational fishing. These innovations would superficially be viewed as positive from the perspective of the angler (aside from the financial cost of purchasing some technologies), yet for the fisheries manager and policy maker, technology may create unintended challenges that lead to reactionary or even ill-defined approaches as they attempt to keep up with these changes. The goal of this paper is to consider how innovations in recreational fishing are changing the way that anglers interact with fish, and thus how recreational fisheries management is undertaken. We use a combination of structured reviews and expert analyses combined with descriptive case studies to highlight the many ways that technology is influencing recreational fishing practice, and, relatedly, what it means for changing how fisheries and/or these technologies need to be managed-from changes in fish capture, to fish handling, to how anglers share information with each other and with managers. Given that technology is continually evolving, we hope that the examples provided here lead to more and better monitoring of technological innovations and engagement by the management and policy authorities with the recreational fishing sector. Doing so will ensure that management actions related to emerging and evolving recreational fishing technology are more proactive than reactive.

13.
Oecologia ; 194(1-2): 283-298, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33006076

RESUMO

Information on ecological systems often comes from diverse sources with varied levels of complexity, bias, and uncertainty. Accordingly, analytical techniques continue to evolve that address these challenges to reveal the characteristics of ecological systems and inform conservation actions. We applied multiple statistical learning algorithms (i.e., machine learning) with a range of information sources including fish tracking data, environmental data, and visual surveys to identify potential spawning aggregation sites for a marine fish species, permit (Trachinotus falcatus), in the Florida Keys. Recognizing the potential complementarity and some level of uncertainty in each information source, we applied supervised (classic and conditional random forests; RF) and unsupervised (fuzzy k-means; FKM) algorithms. The two RF models had similar predictive performance, but generated different predictor variable importance structures and spawning site predictions. Unsupervised clustering using FKM identified unique site groupings that were similar to the likely spawning sites identified with RF. The conservation of aggregate spawning fish species depends heavily on the protection of key spawning sites; many of these potential sites were identified here for permit in the Florida Keys, which consisted of relatively deep-water natural and artificial reefs with high mean permit residency periods. The application of multiple machine learning algorithms enabled the integration of diverse information sources to develop models of an ecological system. Faced with increasingly complex and diverse data sources, ecologists, and conservation practitioners should find increasing value in machine learning algorithms, which we discuss here and provide resources to increase accessibility.


Assuntos
Ecossistema , Aprendizado de Máquina , Algoritmos , Animais , Florida , Reprodução
14.
J Fish Biol ; 97(1): 4-15, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32243570

RESUMO

Blood sampling through the caudal vasculature is a widely used technique in fish biology for investigating organismal health and physiology. In live fishes, it can provide a quick, easy and relatively non-invasive method for obtaining a blood sample (cf. cannulation and cardiac puncture). Here, a general set of recommendations are provided for optimizing the blood sampling protocol that reflects best practices in animal welfare and sample integrity. This includes selecting appropriate use of anaesthetics for blood sampling as well as restraint techniques for situations where sedation is not used. In addition, ideal sampling environments where the fish can freely ventilate and strategies for minimizing handling time are discussed. This study summarizes the techniques used for extracting blood from the caudal vasculature in live fishes, highlighting the phlebotomy itself, the timing of sampling events and acceptable blood sample volumes. This study further discuss considerations for selecting appropriate physiological metrics when sampling in the caudal region and the potential benefits that this technique provides with respect to long-term biological assessments. Although general guidelines for blood sampling are provided here, it should be recognized that contextual considerations (e.g., taxonomic diversity, legal matters, environmental constraints) may influence the approach to blood sampling. Overall, it can be concluded that when done properly, blood sampling live fishes through the caudal vasculature is quick, efficient and minimally invasive, thus promoting conditions where live release of focal animals is possible.


Assuntos
Coleta de Amostras Sanguíneas/veterinária , Peixes , Flebotomia/veterinária , Bem-Estar do Animal , Animais , Coleta de Amostras Sanguíneas/métodos , Flebotomia/métodos
15.
Ecology ; 101(2): e02920, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31661156

RESUMO

Social information obtained from heterospecifics can enhance individual fitness by reducing environmental uncertainty, making it an important driver of mixed-species grouping behavior. Heterospecific groups are well documented among fishes, yet are notably more prevalent among juveniles than more advanced life stages, implying that the adaptive value of joining other species is greater during this developmental period. We propose this phenomenon can be explained by the heightened ecological relevance of heterospecifically produced cues pertaining to predation risk and or resources, as body-size uniformity inherent in early ontogeny yields greater overlap in predator and prey guild membership across juveniles of disparate taxa. To evaluate the putative role of information in shaping juvenile fish assemblages, we employed a joint species distribution model (JSDM), identifying nonrandom relationships among fishes collected in 785 seine hauls within the shallow littoral zones of a subtropical island. After accounting for species-environment relationships, which explained 39% of observed covariation in the abundance of 11 taxa, we detected high rates of positive association (84% of significant correlations) predominantly between mutual foraging guild members, consistent with assemblage patterns predicted to evolve under widespread interspecific information use. Affiliations occurred primarily between species characterized by neutral (i.e., noninteracting) or negative (i.e., predator-prey) relationships in later life stages, supporting the notion that heightened niche overlap due to body size homogeneity acted to increase the pertinence of information among juveniles. Taxa exerted varying degrees of influence on assemblage structure; however Eucinostomus spp., a gregarious generalist with exceptional information-production potential, had an effect several times that of all other species combined, further evidencing the likely role of information in motivating observed relationships. Co-occurrence and qualitative behavioral data inferred from remote underwater video surveys reinforced these conclusions. Collectively, these results suggest that positive interactions linked to information exchange can be among the principal factors organizing juvenile fish assemblages at local scales, highlighting the role of ontogeny in mediating the relevance and exploitation of information across species.


Assuntos
Peixes , Comportamento Predatório , Animais , Tamanho Corporal
16.
J Fish Biol ; 96(2): 469-479, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823365

RESUMO

We used acoustic telemetry to quantify permit Trachinotus falcatus habitat use and connectivity in proximity to the Florida Keys, USA, and assessed these patterns relative to current habitat and fisheries management practices. From March 2017 to June 2018, 45 permit tagged within 16 km of the lower Florida Keys were detected at stationary acoustic receivers throughout the south Florida region, the majority of which remained within the Special Permit Zone, where more extensive fisheries harvest regulations are implemented. There was a high level of connectivity between nearshore flats (i.e., <3 m water depth) and the Florida reef tract (FRT; 15-40 m water depth), with 75% of individuals detected in both habitats. These locations probably function primarily as foraging and spawning habitats, respectively. Permit occupancy on the FRT peaked during the months of March-September, with the highest number of individuals occurring there in April and May. Specific sites on the FRT were identified as potentially important spawning locations, as they attracted a high proportion of individuals that exhibited frequent visits with high residency durations. There were also significant positive relationships between seasonal habitat-use metrics on the FRT and an empirical permit gonadosomatic index. Large aggregations of permit at spawning sites on the FRT are potentially vulnerable to the effects of fishing (including predation during catch and release) at a critical point in their life cycle. These data on permit space use and movement, coupled with knowledge of stressors on their ecology, provide insights for implementing science-based strategic management plans.


Assuntos
Ecossistema , Pesqueiros/organização & administração , Peixes/classificação , Peixes/fisiologia , Estações do Ano , Animais , Conservação dos Recursos Naturais , Florida , Comportamento Predatório
17.
J Fish Biol ; 95(2): 562-574, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31119738

RESUMO

Bonefishes Albula spp. are important components of subsistence fisheries and lucrative sport fishing industries throughout their circumtropical distribution. In Oceania, however, Albula spp. have historically been overexploited and there is a growing need to balance the demands of competing fishing sectors, making the description of their life history a regional priority. To this aim, we collected biological samples from Albula spp. of Anaa atoll, French Polynesia, to identify the species that compose the stock and estimate their life-history parameters including age, growth, reproduction and natural mortality. Our results indicate that Albula glossodonta is the species of bonefish present, with a maximum age that is below the, 20 year longevity of the genus (8 years in males and 10 years in females). Differential growth patterns existed between the two sexes (L∞ = 58, 78 cm fork length (LF ) and K = 0.38, 0.21 for males and females, respectively). Males attained sexual maturity at 43 cm LF (c. 3 years) whereas females matured at 48 cm LF (c. 4 years) and oocyte production was significantly related to body mass, with a maximum batch fecundity of 1,133,767 oocytes in a 4406 g (70 cm LF ) female. The gonado-somatic index of harvested fishes indicated that the spawning season extends from March through September. Based on the observation of a, 20 year bonefish at the proximate Tetiaroa Atoll and several empirical models, estimates of natural mortality ranged from 0.21 to 0.68; however, an estimate of 0.21 was deemed most appropriate. This information facilitated the resurgence of a Rahui (temporary fishing closure) and community-based management to protect A. glossodonta during a critical portion of their spawning season and in this context our results provide an important demographic baseline in evaluating the recovery of this fishery.


Assuntos
Peixes/fisiologia , Características de História de Vida , Animais , Feminino , Fertilidade , Pesqueiros , Longevidade , Masculino , Oceania , Oócitos , Reprodução , Estações do Ano
18.
J Fish Biol ; 94(6): 845-856, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30779138

RESUMO

Recreational fisheries that use rod and reel (i.e., angling) operate around the globe in diverse freshwater and marine habitats, targeting many different gamefish species and engaging at least 220 million participants. The motivations for fishing vary extensively; whether anglers engage in catch-and-release or are harvest-oriented, there is strong potential for recreational fisheries to be conducted in a manner that is both responsible and sustainable. There are many examples of recreational fisheries that are well-managed where anglers, the angling industry and managers engage in responsible behaviours that both contribute to long-term sustainability of fish populations and the sector. Yet, recreational fisheries do not operate in a vacuum; fish populations face threats and stressors including harvest from other sectors as well as environmental change, a defining characteristic of the Anthropocene. We argue that the future of recreational fisheries and indeed many wild fish populations and aquatic ecosystems depends on having responsible and sustainable (R&S) recreational fisheries whilst, where possible, addressing, or at least lobbying for increased awareness about the threats to recreational fisheries emanating from outside the sector (e.g., climate change). Here, we first consider how the concepts of R&S intersect in the recreational fishing sector in an increasingly complex socio-cultural context. Next, we explore the role of the angler, angling industry and decision-makers in achieving R&S fisheries. We extend this idea further by considering the consequences of a future without recreational fisheries (either because of failures related to R&S) and explore a pertinent case study situated in Uttarakahand, India. Unlike other fisheries sectors where the number of participants is relatively small, recreational angling participants are numerous and widespread, such that if their actions are responsible, they have the potential to be a key voice for conservation and serve as a major force for good in the Anthropocene. What remains to be seen is whether this will be achieved, or if failure will occur to the point that recreational fisheries face increasing pressure to cease, as a result of external environmental threats, the environmental effects of recreational fishing and emerging ethical concerns about the welfare of angled fish.


Assuntos
Pesqueiros/ética , Avaliação de Programas e Projetos de Saúde , Recreação , Animais , Mudança Climática , Conservação dos Recursos Naturais , Tomada de Decisões , Ecossistema , Água Doce , Índia , Alimentos Marinhos
19.
PLoS One ; 14(1): e0211503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30695074

RESUMO

Since the 1970s, the magnitude of turtle cold-stun strandings have increased dramatically within the northwestern Atlantic. Here, we examine oceanic, atmospheric, and biological factors that may affect the increasing trend of cold-stunned Kemp's ridleys in Cape Cod Bay, Massachusetts, United States of America. Using machine learning and Bayesian inference modeling techniques, we demonstrate higher cold-stunning years occur when the Gulf of Maine has warmer sea surface temperatures in late October through early November. Surprisingly, hatchling numbers in Mexico, a proxy for population abundance, was not identified as an important factor. Further, using our Bayesian count model and forecasted sea surface temperature projections, we predict more than 2,300 Kemp's ridley turtles may cold-stun annually by 2031 as sea surface temperatures continue to increase within the Gulf of Maine. We suggest warmer sea surface temperatures may have modified the northerly distribution of Kemp's ridleys and act as an ecological bridge between the Gulf Stream and nearshore waters. While cold-stunning may currently account for a minor proportion of juvenile mortality, we recommend continuing efforts to rehabilitate cold-stunned individuals to maintain population resiliency for this critically endangered species in the face of a changing climate and continuing anthropogenic threats.


Assuntos
Temperatura Baixa/efeitos adversos , Espécies em Perigo de Extinção , Hipotermia/etiologia , Oceanos e Mares , Tartarugas/fisiologia , Animais , Oceano Atlântico , Teorema de Bayes
20.
J Fish Biol ; 93(2): 207-214, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931782

RESUMO

Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration.


Assuntos
Aceleração , Acelerometria/normas , Peixes/fisiologia , Natação/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...