Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37837096

RESUMO

BACKGROUND: The G2019S-LRRK2 gene mutation is a common cause of hereditary Parkinson's disease (PD), associated with a higher frequency of the postural instability gait difficulty (PIGD) motor phenotype yet with preserved cognition. This study investigated neurophysiological changes during motor and cognitive tasks in PD patients with and without the G2019S-LRRK2 mutation. METHODS: 33 iPD patients and 22 LRRK2-PD patients performed the visual Go/NoGo task (VGNG) during sitting (single-task) and walking (dual-task) while wearing a 64-channel EEG cap. Event-related potentials (ERP) from Fz and Pz, specifically N200 and P300, were extracted and analyzed to quantify brain activity patterns. RESULTS: The LRRK2-PD group performed better in the VGNG than the iPD group (group*task; p = 0.05). During Go, the iPD group showed reduced N2 amplitude and prolonged N2 latency during walking, whereas the LRRK2-PD group showed only shorter latency (group*task p = 0.027). During NoGo, opposite patterns emerged; the iPD group showed reduced N2 and increased P3 amplitudes during walking while the LRRK2-PD group demonstrated increased N2 and reduced P3 (N2: group*task, p = 0.010, P3: group*task, p = 0.012). CONCLUSIONS: The LRRK2-PD group showed efficient early cognitive processes, reflected by N2, resulting in greater neural synchronization and prominent ERPs. These processes are possibly the underlying mechanisms for the observed better cognitive performance as compared to the iPD group. As such, future applications of intelligent medical sensing should be capable of capturing these electrophysiological patterns in order to enhance motor-cognitive functions.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Potenciais Evocados , Mutação , Fenótipo , Eletroencefalografia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética
2.
J Parkinsons Dis ; 12(1): 243-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34569972

RESUMO

BACKGROUND: The performance on a visual Go/NoGo (VGNG) task during walking has been used to evaluate the effect of gait on response inhibition in young and older adults; however, no work has yet included Parkinson's disease (PD) patients for whom such changes may be even more enhanced. OBJECTIVE: In this study, we aimed to explore the effect of gait on automatic and cognitive inhibitory control phases in PD patients and the associated changes in neural activity and compared them with young and older adults. METHODS: 30 PD patients, 30 older adults, and 11 young adults performed a visual Go/NoGo task in a sitting position and during walking on a treadmill while their EEG activity and gait were recorded. Brain electrical activity was evaluated by the amplitude, latency, and scalp distribution of N2 and P300 event related potentials. Mix model analysis was used to examine group and condition effects on task performance and brain activity. RESULTS: The VGNG accuracy rates in PD patients during walking were lower than in young and older adults (F = 5.619, p = 0.006). For all groups, N2 latency during walking was significantly longer than during sitting (p = 0.013). In addition, P300 latency was significantly longer in PD patients (p < 0.001) and older adults (p = 0.032) during walking compared to sitting and during 'NoGo' trials compared with 'Go' trials. Moreover, the young adults showed the smallest number of electrodes for which a significant differential activation between sit to walk was observed, while PD patients showed the largest with N2 being more strongly manifested in bilateral parietal electrodes during walking and in frontocentral electrodes while seated. CONCLUSION: The results show that response inhibition during walking is impaired in older subjects and PD patients and that increased cognitive load during dual-task walking relates to significant change in scalp electrical activity, mainly in parietal and frontocentral channels.


Assuntos
Doença de Parkinson , Idoso , Eletroencefalografia/métodos , Teste de Esforço , Marcha/fisiologia , Humanos , Doença de Parkinson/complicações , Caminhada/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...