Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248609

RESUMO

Automated guided vehicles (AGVs) are vital for optimizing the transport of material in modern industry. AGVs have been widely used in production, logistics, transportation, and commerce, enhancing productivity, lowering labor costs, improving energy efficiency, and ensuring safety. However, path planning for AGVs in complex and dynamic environments remains challenging due to the computation of obstacle avoidance and efficient transport. This study proposes a novel approach that combines multi-objective particle swarm optimization (MOPSO) and the dynamic-window approach (DWA) to enhance AGV path planning. Optimal AGV trajectories considering energy consumption, travel time, and collision avoidance were used to model the multi-objective functions for dealing with the outcome-feasible optimal solution. Empirical findings and results demonstrate the approach's effectiveness and efficiency, highlighting its potential for improving AGV navigation in real-world scenarios.

2.
Entropy (Basel) ; 24(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892997

RESUMO

Node coverage is one of the crucial metrics for wireless sensor networks' (WSNs') quality of service, directly affecting the target monitoring area's monitoring capacity. Pursuit of the optimal node coverage encounters increasing difficulties because of the limited computational power of individual nodes, the scale of the network, and the operating environment's complexity and constant change. This paper proposes a solution to the optimal node coverage of unbalanced WSN distribution during random deployment based on an enhanced Archimedes optimization algorithm (EAOA). The best findings for network coverage from several sub-areas are combined using the EAOA. In order to address the shortcomings of the original Archimedes optimization algorithm (AOA) in handling complicated scenarios, we suggest an EAOA based on the AOA by adapting its equations with reverse learning and multidirection techniques. The obtained results from testing the benchmark function and the optimal WSN node coverage of the EAOA are compared with the other algorithms in the literature. The results show that the EAOA algorithm performs effectively, increasing the feasible range and convergence speed.

3.
Sensors (Basel) ; 20(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796687

RESUMO

Wireless Rechargeable Sensor Networks (WRSN) are not yet fully functional and robust due to the fact that their setting parameters assume fixed control velocity and location. This study proposes a novel scheme of the WRSN with mobile sink (MS) velocity control strategies for charging nodes and collecting its data in WRSN. Strip space of the deployed network area is divided into sub-locations for variant corresponding velocities based on nodes energy expenditure demands. The points of consumed energy bottleneck nodes in sub-locations are determined based on gathering data of residual energy and expenditure of nodes. A minimum reliable energy balanced spanning tree is constructed based on data collection to optimize the data transmission paths, balance energy consumption, and reduce data loss during transmission. Experimental results are compared with the other methods in the literature that show that the proposed scheme offers a more effective alternative in reducing the network packet loss rate, balancing the nodes' energy consumption, and charging capacity of the nodes than the competitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...