Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(8): 667-674, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403420

RESUMO

Iodine contrast agents are essential for diagnostic purposes in radiology and have significant medical benefits. However, they pose a risk of causing allergic reactions or adverse cellular effects. In this study, we examine the in vitro effects of iodine contrast agents (Iopamiro 370, Ultravist 370, Visipaque 320, and Optiray 350) on cellular functions of human peripheral blood mononuclear. The findings reveal that a concentration of 50 mgI/ml of iodine contrast agents causes a 50% reduction in cell viability, but lower concentrations of 2.5, 5.0, and 10.0 mgI/ml do not affect the cell cycle. Furthermore, the contrast agents decrease oxidative stress levels in cells. In conclusion, this study demonstrates that iodine contrast agents can be used safely in appropriate concentrations for diagnostic purposes without affecting the cell cycle and preventing oxidative stress on normal cells. The insights gained from this study could aid in the development of diagnostic contrast agents in the future of medicine.


Assuntos
Meios de Contraste , Iodo , Humanos , Meios de Contraste/toxicidade , Sobrevivência Celular , Leucócitos Mononucleares , Iodo/toxicidade , Ciclo Celular
2.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679309

RESUMO

Radiation protection in radiology is important because radiation may cause harm to the human body. The equipment for radiation protection is essential to ensure safe operations. Currently, there is widespread research on lead-free radiation shielding material. The aim of this research was to study lead-free material containing epoxy and iodine contrast media that was easy to form, low in cost, and environmentally friendly. The results showed that 2-cm material thickness with a concentration of 20% iodine had the greatest properties of radiation attenuate in the peak potential applied at technique 60-120 kVp, but the structure and strength of the shielding materials were decreased in accordance with increasing concentrations of iodine contrast media. It can be concluded that the lead-free epoxy radiation-shielding materials are able to absorb radiation at energy levels of 60-120 kVp. However, with improvement on homogeneity in the future, it could be used as a refractory shielding material in the radiology department.

3.
Antibiotics (Basel) ; 11(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36290094

RESUMO

Hydroquinine is an organic alkaloid compound that exhibits antimicrobial activity against several bacterial strains including strains of both drug-sensitive and multidrug-resistant P. aeruginosa. Despite this, the effects of hydroquinine on virulence factors in P. aeruginosa have not yet been characterized. We therefore aimed to uncover the mechanism of P. aeruginosa hydroquinine-sensitivity using high-throughput transcriptomic analysis. We further confirmed whether hydroquinine inhibits specific virulence factors using RT-qPCR and phenotypic analysis. At half the minimum inhibitory concentration (MIC) of hydroquinine (1.250 mg/mL), 254 genes were differentially expressed (97 downregulated and 157 upregulated). We found that flagellar-related genes were downregulated by between −2.93 and −2.18 Log2-fold change. These genes were consistent with the analysis of gene ontology and KEGG pathway. Further validation by RT-qPCR showed that hydroquinine significantly suppressed expression of the flagellar-related genes. By analyzing cellular phenotypes, P. aeruginosa treated with ½MIC of hydroquinine exhibited inhibition of motility (30−54% reduction) and pyocyanin production (~25−27% reduction) and impaired biofilm formation (~57−87% reduction). These findings suggest that hydroquinine possesses anti-virulence factors, through diminishing flagellar, pyocyanin and biofilm formation.

4.
Front Microbiol ; 13: 894637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677908

RESUMO

Candida albicans is a fungus that lives primarily on the mucosal surfaces of healthy humans, such as the oral cavity, vagina, and gastrointestinal tract. This commensal organism can be controlled by other microbiota, while certain conditions can increase the risk of C. albicans outgrowth and cause disease. Prevalence of the drug-resistant phenotype, as well as the severity of C. albicans infection in immunocompromised patients, presents a challenge for scientists to develop novel, effective treatment, and prevention strategies. ß-Citronellol is an intriguing active compound of several plants that has been linked to antifungal activity, but data on the mechanism of action in terms of proteomic profiling are lacking. Here, ß-citronellol identified from Citrus hystrix DC. leaf against C. albicans were evaluated. A proteomic approach was used to identify potential target proteins involved in the mode of action of ß-citronellol. This study identified and discussed three protein groups based on the 126 major proteins that were altered in response to ß-citronellol treatment, 46 of which were downregulated and 80 of which were upregulated. Significant protein groups include cell wall proteins (e.g., Als2p, Rbt1p, and Pga4p), cellular stress response enzymes (e.g., Sod1p, Gst2p, and Ddr48p), and ATP synthesis-associated proteins (e.g., Atp3p, Atp7p, Cox1p, and Cobp). Results demonstrated the complexities of protein interactions influenced by ß-citronellol treatment and highlighted the potential of antifungal activity for future clinical and drug development research.

5.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630704

RESUMO

Cyrtosperma johnstonii is one of the most interesting traditional medicines for cancer treatment. This study aimed to compare and combine the biological activities related to cancer prevention of the flavonoid glycosides rutin (RT) and isorhamnetin-3-o-rutinoside (IRR) and their hydrolysis products quercetin (QT) and isorhamnetin (IR) from C.johnstonii extract. ABTS and MTT assays were used to determine antioxidant activity and cytotoxicity against various cancer cells, as well as normal cells. Anti-inflammatory activities were measured by ELISA. The results showed that the antioxidant activities of the compounds decreased in the order of QT > IR > RT > IRR, while most leukemia cell lines were sensitive to QT and IR with low toxicity towards PBMCs. The reduction of IL-6 and IL-10 secretion by QT and IR was higher than that induced by RT and IRR. The combination of hydrolysis products (QT and IR) possessed a strong synergism in antioxidant, antiproliferative and anti-inflammatory effects, whereas the combination of flavonoid glycosides and their hydrolysis products revealed antagonism. These results suggest that the potential of the combination of hydrolyzed flavonoids from C. johnstonii can be considered as natural compounds for the prevention of cancer.


Assuntos
Cyrtosperma , Neoplasias , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Glicosídeos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Rutina/farmacologia
6.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353129

RESUMO

Triple negative breast cancer is one of the most aggressive breast cancer type with abilities of early metastasis and chemoresistance. The tropical plant Citrus hystrix DC. has been reported to promote many biological activities including anticancer. However, the effect of C. hystrix against triple negative breast cancer has not yet been identified. This study aimed to evaluate the anticancer properties of C. hystrix leaf extract and its bioactive constituents citronellol and citronellal against the triple negative breast cancer MDA-MB-231 cell line. C. hystrix leaves were powdered and sequentially macerated. The in vitro anticancer effects of C. hystrix leaf extracts, and its bioactive constituents (citronellol and citronellal) were evaluated against MDA-MB-231 cell line using cytotoxic MTT assay, cell proliferation, wound scratch migration, colony formation, cell cycle, apoptosis assay, Hoechst staining, RT-qPCR, and Western blot analysis. Results showed that crude hexane extract, citronellol, and citronellal significantly reduced cell proliferation, colony formation, and cell migration by inducing cell cycle arrest, while also inducing apoptosis in MDA-MB-231 cells through inhibition of anti-apoptotic Bcl-2 expression, leading to activation of the caspase-3-dependent pathway. This study is the first report to demonstrate the effect of C. hystrix, citronellol, and citronellal against triple negative breast cancer MDA-MB-231 cells.

7.
AAPS PharmSciTech ; 21(4): 121, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32337630

RESUMO

Multidrug resistance is the major problem in cancer treatment nowadays. Compounds from plants are the new targets to solve this problem. Quercetin (QCT), quercetrin (QTR), and rutin (RUT) are potential anticancer flavonoids but their poor water solubility leads to less efficacy. In this study, the polymeric micelles of benzoylated methoxy-poly (ethylene glycol)-b-oligo(ε-caprolactone) or mPEG-b-OCL-Bz loading with the flavonoids were prepared to solve these problems. The flavonoid-loaded micelles showed an average size of 13-20 nm and maximum loading capacity of 35% (w/w). The release of QCT (21%, 3 h) was lower than that of QTR (51%, 3 h) and RUT (58%, 3 h). QCT (free and micelle forms) exhibited significantly higher cytotoxicity against P-glycoprotein-overexpressing leukemia (K562/ADR) cells than QTR and RUT (p < 0.05). The results demonstrated that QCT-loaded micelles effectively reversed cytotoxicity of both doxorubicin (multidrug resistant reversing (δ) values up to 0.71) and daunorubicin (δ values up to 0.74) on K562/ADR cells. It was found that QCT-loaded micelles as well as empty polymeric micelles inhibited P-gp efflux of tetrahydropyranyl Adriamycin. Besides, mitochondrial membrane potential was decreased by QCT (in its free form and micellar formation). Our results suggested that the combination effects of polymeric micelles (inhibiting P-gp efflux) and QCT (interfering mitochondrial membrane potential) might be critical factors contributing to the reversing multidrug resistance of K562/ADR cells by QCT-loaded micelles. We concluded that QCT-loaded mPEG-b-OCL-Bz micelles are the attractive systems for overcoming multidrug-resistant cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/síntese química , Antineoplásicos/síntese química , Flavonoides/síntese química , Micelas , Polietilenoglicóis/síntese química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Humanos , Células K562 , Polietilenoglicóis/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...