Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38843812

RESUMO

Objective. In current clinical practice for quality assurance (QA), intensity modulated proton therapy (IMPT) fields are verified by measuring planar dose distributions at one or a few selected depths in a phantom. A QA device that measures full 3D dose distributions at high spatiotemporal resolution would be highly beneficial for existing as well as emerging proton therapy techniques such as FLASH radiotherapy. Our objective is to demonstrate feasibility of 3D dose measurement for IMPT fields using a dedicated multi-layer strip ionization chamber (MLSIC) device.Approach.Our developed MLSIC comprises a total of 66 layers of strip ion chamber (IC) plates arranged, alternatively, in thexandydirection. The first two layers each has 128 channels in 2 mm spacing, and the following 64 layers each has 32/33 IC strips in 8 mm spacing which are interconnected every eight channels. A total of 768-channel IC signals are integrated and sampled at a speed of 6 kfps. The MLSIC has a total of 19.2 cm water equivalent thickness and is capable of measurement over a 25 × 25 cm2field size. A reconstruction algorithm is developed to reconstruct 3D dose distribution for each spot at all depths by considering a double-Gaussian-Cauchy-Lorentz model. The 3D dose distribution of each beam is obtained by summing all spots. The performance of our MLSIC is evaluated for a clinical pencil beam scanning (PBS) plan.Main results.The dose distributions for each proton spot can be successfully reconstructed from the ionization current measurement of the strip ICs at different depths, which can be further summed up to a 3D dose distribution for the beam. 3D Gamma Index analysis indicates acceptable agreement between the measured and expected dose distributions from simulation, Zebra and MatriXX.Significance.The dedicated MLSIC is the first pseudo-3D QA device that can measure 3D dose distribution in PBS proton fields spot-by-spot.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/instrumentação , Terapia com Prótons/instrumentação , Doses de Radiação , Dosagem Radioterapêutica , Prótons , Imagens de Fantasmas , Humanos , Radioterapia de Intensidade Modulada/instrumentação
2.
Med Phys ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748998

RESUMO

BACKGROUND: A dosimeter with high spatial and temporal resolution would be of significant interest for pencil beam scanning (PBS) proton beams' characterization, especially when facing small fields and beams with high temporal dynamics. Optical imaging of scintillators has potential in providing sub-millimeter spatial resolution with pulse-by-pulse basis temporal resolution when the imaging system is capable of operating in synchrony with the beam-producing accelerator. PURPOSE: We demonstrate the feasibility of imaging PBS proton beams as they pass through a plastic scintillator detector to simultaneously obtain multiple beam parameters, including proton range, pencil beam's widths at different depths, spot's size, and spot's position on a pulse-by-pulse basis with sub-millimeter resolution. MATERIALS AND METHODS: A PBS synchrocyclotron was used for proton irradiation. A BC-408 plastic scintillator block with 30 × 30 × 5 cm3 size, and another block with 30 × 30 × 0.5 cm3 size, positioned in an optically sealed housing, were used sequentially to measure the proton range, and spot size/location, respectively. A high-speed complementary metal-oxide-semiconductor (CMOS) camera system synchronized with the accelerator's pulses through a gating module was used for imaging. Scintillation images, captured with the camera directly facing the 5-cm-thick scintillator, were corrected for background (BG), and ionization quenching of the scintillator to obtain the proton range. Spots' position and size were obtained from scintillation images of the 0.5-cm-thick scintillator when a 45° mirror was used to reflect the scintillation light toward the camera. RESULTS: Scintillation images with 0.16 mm/pixel resolution corresponding to all proton pulses were captured. Pulse-by-pulse analysis showed that variations of the range, spots' position, and size were within ± 0.2% standard deviation of their average values. The absolute ranges were within ± 1 mm of their expected values. The average spot-positions were mostly within ± 0.8 mm and spots' sigma agreed within 0.2 mm of the expected values. CONCLUSION: Scintillation-imaging PBS beams with high-spatiotemporal resolution is feasible and may help in efficient and cost-effective acceptance testing and commissioning of existing and even emerging technologies such as FLASH, grid, mini-beams, and so forth.

3.
Sci Data ; 11(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168104

RESUMO

Digital holographic microscopy (DHM) is an intriguing medical diagnostic tool due to its label-free and quantitative nature, providing high-contrast images of phase samples. By capturing both intensity and phase information, DHM enables the numerical reconstruction of quantitative phase images. However, the lateral resolution is limited by the diffraction limit, which prompted the recent suggestion of microsphere-assisted DHM to enhance the DHM resolution straightforwardly. The use of such a technique as a medical diagnostic tool requires testing and validation of the proposed assays to prove their feasibility and viability. This paper publishes 760 and 609 microsphere-assisted DHM images of normal and thalassemic red blood cells obtained from a normal and thalassemic male individual, respectively.


Assuntos
Holografia , Talassemia , Humanos , Masculino , Holografia/métodos , Talassemia/patologia
4.
Opt Lett ; 48(23): 6216-6219, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039230

RESUMO

We present a simple high-resolution approach for 3D and quantitative phase imaging (QPI). Our method makes the most of a glass microsphere (MS) for microscopy and a glass plate for lateral shearing self-referencing interferometry. The single MS serves all the functions of a microscope objective (MO) in digital holographic microscopy (DHM) while offering the advantages of compactness, lightness, and affordability. A proof-of-concept experiment is performed on a standard diffraction grating, and various effective parameters on the imaging performance are investigated. The results are validated by atomic force microscopy and Mirau-DHM, and 3D morphometric information of the sample under inspection is obtained. The technique is then applied for 3D quantitative measurement and visualization of a human red blood cell, proving the principle of our easy-to-implement and vibration-immune arrangement for high-contrast label-free QPI of biological samples, and its utility in cell morphology, identification, and classification.

5.
Sci Rep ; 13(1): 20181, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978269

RESUMO

Ultra-high dose rate (UHDR) radiotherapy (RT) or FLASH-RT can potentially reduce normal tissue toxicity. A small animal irradiator that can deliver FLASH-RT treatments similar to clinical RT treatments is needed for pre-clinical studies of FLASH-RT. We designed and simulated a novel small animal FLASH irradiator (SAFI) based on distributed x-ray source technology. The SAFI system comprises a distributed x-ray source with 51 focal spots equally distributed on a 20 cm diameter ring, which are used for both FLASH-RT and onboard micro-CT imaging. Monte Carlo simulation was performed to estimate the dosimetric characteristics of the SAFI treatment beams. The maximum dose rate, which is limited by the power density of the tungsten target, was estimated based on finite-element analysis (FEA). The maximum DC electron beam current density is 2.6 mA/mm2, limited by the tungsten target's linear focal spot power density. At 160 kVp, 51 focal spots, each with a dimension of [Formula: see text] mm2 and 10° anode angle, can produce up to 120 Gy/s maximum DC irradiation at the center of a cylindrical water phantom. We further demonstrate forward and inverse FLASH-RT planning, as well as inverse-geometry micro-CT with circular source array imaging via numerical simulations.


Assuntos
Radiometria , Tungstênio , Animais , Raios X , Doses de Radiação , Microtomografia por Raio-X , Imagens de Fantasmas , Dosagem Radioterapêutica , Método de Monte Carlo
6.
Sci Rep ; 13(1): 8549, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236999

RESUMO

There is an increasing interest in non-destructive and real-time high-resolution approaches for corrosion studies in metals. In this paper, we propose the dynamic speckle pattern method as a low-cost, easy-to-implement, and quasi in-situ optical technique for the quantitative evaluation of pitting corrosion. This type of corrosion occurs in a specific area of a metallic structure and causes holes formation leading to structural failure. A Custom 450 stainless steel sample, placed in 3.5 wt% NaCl solution and applied to a [Formula: see text] potential to initiate the corrosion, is used as the sample. The speckle patterns formed by the scattering of a He-Ne laser light is changed over time due to any corrosion in the sample. The analysis of the time-integrate speckle pattern suggests that the growth rate of pitting decreases with time.

7.
Light Sci Appl ; 12(1): 22, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627286

RESUMO

Microsphere-assisted microscopy utilizing a microsphere in immediate proximity of the specimen boosts the imaging resolution mainly as a result of an increase in the effective numerical aperture of the system.

8.
IEEE Trans Radiat Plasma Med Sci ; 6(3): 252-262, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36092270

RESUMO

Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.

9.
Phys Med Biol ; 67(17)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35905730

RESUMO

Objective. Proton pencil beam scanning (PBS) treatment fields needs to be verified before treatment deliveries to ensure patient safety. In current practice, treatment beam quality assurance (QA) is measured at a few selected depths using film or a 2D detector array, which is insensitive and time-consuming. A QA device that can measure all key dosimetric characteristics of treatment beams spot-by-spot within a single beam delivery is highly desired.Approach. We developed a multi-layer strip ionization chamber (MLSIC) prototype device that comprises of two layers of strip ionization chambers (IC) plates for spot position measurement and 64 layers of plate IC for beam energy measurement. The 768-channel strip ion chamber signals are integrated and sampled at a speed of 3.125 kHz. It has a 25.6 cm × 25.6 cm maximum measurement field size and 2 mm spatial resolution for spot position measurement. The depth resolution and maximum depth were 2.91 mm and 18.6 cm for 1.6 mm thick IC plate, respectively. The relative weight of each spot was determined from total charge by all IC detector channels.Main results. The MLSIC is able to measure ionization currents spot-by-spot. The depth dose measurement has a good agreement with the ground truth measured using a water tank and commercial one-dimensional (1D) multi-layer plate chamber. It can verify the spot position, energy, and relative weight of clinical PBS beams and compared with the treatment plans.Significance. The MLSIC is a highly efficient QA device that can measure the key dosimetric characteristics of proton treatment beams spot-by-spot with a single beam delivery. It may improve the quality and efficiency of clinical proton treatments.


Assuntos
Terapia com Prótons , Radioatividade , Humanos , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Radiometria , Dosagem Radioterapêutica
10.
Med Phys ; 49(9): 6209-6220, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35760763

RESUMO

BACKGROUND: With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance tools with high spatiotemporal resolution to conveniently measure the spatial and temporal properties of the beam. In this context, scintillation-based dosimeters, if synchronized with the radiation beam and corrected for ionization quenching, are appealing. PURPOSE: To develop a synchronized high-speed scintillation imaging system for characterization and verification of the proton therapy beams on a pulse-by-pulse basis. MATERIALS AND METHODS: A 30 cm × 30 cm × 5 cm block of BC-408 plastic scintillator placed in a light-tight housing was irradiated by proton beams generated by a Mevion S250 proton therapy synchrocyclotron. A high-speed camera system, placed perpendicular to the beam direction and facing the scintillator, was synchronized to the accelerator's pulses to capture images. Opening and closing of the camera's shutter was controlled by setting a proper time delay and exposure time, respectively. The scintillation signal was recorded as a set of two-dimensional (2D) images. Empirical correction factors were applied to the images to correct for the nonuniformity of the pixel sensitivity and quenching of the scintillator. Proton range and modulation were obtained from the corrected images. RESULTS: The camera system was able to capture all data on a pulse-by-pulse basis at a rate of ∼504 frames per second. The applied empirical correction method for ionization quenching was effective and the corrected composite image provided a 2D map of dose distribution. The measured range (depth of distal 90%) through scintillation imaging agreed within 1.2 mm with that obtained from ionization chamber measurement. CONCLUSION: A high-speed camera system capable of capturing scintillation signals from individual proton pulses was developed. The scintillation imaging system is promising for rapid proton beam characterization and verification.


Assuntos
Terapia com Prótons , Contagem de Cintilação , Ciclotrons , Método de Monte Carlo , Prótons , Radiometria , Dosagem Radioterapêutica , Contagem de Cintilação/métodos
11.
Med Phys ; 49(7): 4912-4932, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35404484

RESUMO

The clinical translation of FLASH radiotherapy (RT) requires challenges related to dosimetry and beam monitoring of ultra-high dose rate (UHDR) beams to be addressed. Detectors currently in use suffer from saturation effects under UHDR regimes, requiring the introduction of correction factors. There is significant interest from the scientific community to identify the most reliable solutions and suitable experimental approaches for UHDR dosimetry. This interest is manifested through the increasing number of national and international projects recently proposed concerning UHDR dosimetry. Attaining the desired solutions and approaches requires further optimization of already established technologies as well as the investigation of novel radiation detection and dosimetry methods. New knowledge will also emerge to fill the gap in terms of validated protocols, assessing new dosimetric procedures and standardized methods. In this paper, we discuss the main challenges coming from the peculiar beam parameters characterizing UHDR beams for FLASH RT. These challenges vary considerably depending on the accelerator type and technique used to produce the relevant UHDR radiation environment. We also introduce some general considerations on how the different time structure in the production of the radiation beams, as well as the dose and dose-rate per pulse, can affect the detector response. Finally, we discuss the requirements that must characterize any proposed dosimeters for use in UDHR radiation environments. A detailed status of the current technology is provided, with the aim of discussing the detector features and their performance characteristics and/or limitations in UHDR regimes. We report on further developments for established detectors and novel approaches currently under investigation with a view to predict future directions in terms of dosimetry approaches, practical procedures, and protocols. Due to several on-going detector and dosimetry developments associated with UHDR radiation environment for FLASH RT it is not possible to provide a simple list of recommendations for the most suitable detectors for FLASH RT dosimetry. However, this article does provide the reader with a detailed description of the most up-to-date dosimetric approaches, and describes the behavior of the detectors operated under UHDR irradiation conditions and offers expert discussion on the current challenges which we believe are important and still need to be addressed in the clinical translation of FLASH RT.


Assuntos
Radiometria , Radiometria/métodos , Dosagem Radioterapêutica
12.
Med Phys ; 49(4): 2602-2620, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35103331

RESUMO

PURPOSE: To present a proton computed tomography (pCT) reconstruction approach that models the integral depth dose (IDD) of the clinical scanning proton beam into beamlets. Using a multilayer ionization chamber (MLIC) as the imager, the proposed pCT system and the reconstruction approach can minimize extra ambient neutron dose and simplify the beamline design by eliminating an additional collimator to confine the proton beam. METHODS: Monte Carlo simulation was applied to digitally simulate the IDDs of the exiting proton beams detected by the MLIC. A forward model was developed to model each IDD into a weighted sum of percentage depth doses of the constituent beamlets separated laterally by 1 mm. The water equivalent path lengths (WEPLs) of the beamlets were determined by iteratively minimizing the squared L2-norm between the forward projected and simulated IDDs. The final WEPL values were reconstructed to pCT images, that is, proton stopping power ratio (SPR) maps, through simultaneous algebraic reconstruction technique with total variation regularization. The reconstruction process was tested with a digital cylindrical water-based phantom and an ICRP adult reference computational phantom. The mean of SPR within regions of interest (ROIs) and the WEPL along a 4 mm-wide beam ( WEP L 4 mm ${\rm{WEP}}{{\rm{L}}_{4{\rm{mm}}}}$ ) were compared with the reference values. The spatial resolution was analyzed at the edge of a cortical insert of the cylindrical phantom. RESULTS: The percentage deviations from reference SPR were within ±1% in all selected ROIs. The mean absolute error of the reconstructed SPR was 0.33%, 0.19%, and 0.27% for the cylindrical phantom, the adult phantom at the head and lung region, respectively. The corresponding percentage deviations from reference WEP L 4 mm ${\rm{WEP}}{{\rm{L}}_{4{\rm{mm}}}}$ were 0.48 ± 0.64%, 0.28 ± 0.48%, and 0.22 ± 0.49%. The full width at half maximum of the line spread function (LSF) derived from the radial edge spread function (ESF) of a cortical insert was 0.13 cm. The frequency at 10% of the modulation transfer function (MTF) was 6.38 cm-1 . The mean signal-to-noise ratio (SNR) of all the inserts was 2.45. The mean imaging dose was 0.29 and 0.25 cGy at the head and lung region of the adult phantom, respectively. CONCLUSION: A new pCT reconstruction approach was developed by modeling the IDDs of the uncollimated scanning proton beams in the pencil beam geometry. SPR accuracy within ±1%, spatial resolution of better than 2 mm at 10% MTF, and imaging dose at the magnitude of mGy were achieved. Potential side effects caused by neutron dose were eliminated by removing the extra beam collimator.


Assuntos
Terapia com Prótons , Prótons , Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Água
13.
Med Phys ; 48(8): 4472-4484, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34077590

RESUMO

PURPOSE: The purpose of this work is to (a) demonstrate the feasibility of delivering a spread-out Bragg peak (SOBP) proton beam in ultra-high dose rate (FLASH) using a proton therapy synchrocyclotron as a major step toward realizing an experimental platform for preclinical studies, and (b) evaluate the response of four models of ionization chambers in such a radiation field. METHODS: A clinical Mevion HYPERSCAN® synchrocyclotron was adjusted for ultra-high dose rate proton delivery. Protons with nominal energy of 230 MeV were delivered in pulses with temporal width ranging from 12.5 µs to 24 µs spanning from conventional to FLASH dose rates. A boron carbide absorber and a range modulator block were placed in the beam path for range modulation and creating an SOBP dose profile. The radiation field was defined by a brass aperture with 11 mm diameter. Two Faraday cups were used to determine the number of protons per pulse at various dose rates. The dosimetric response of two cylindrical (IBA CC04 and CC13) and two plane-parallel (IBA PPC05 and PTW Advanced Markus® ) ionization chambers were evaluated. The dose rate was measured using the plane-parallel ionization chambers. The integral depth dose (IDD) was measured with a PTW Bragg Peak® ionization chamber. The lateral beam profile was measured with EBT-XD radiochromic film. Monte Carlo simulation was performed in TOPAS as the secondary check for the measurements and as a tool for further optimization of the range modulators' design. RESULTS: Faraday cups measurement showed that the maximum protons per pulse is 39.9 pC at 24 µs pulse width. A good agreement between the measured and simulated IDD and lateral beam profiles was observed. The cylindrical ionization chambers showed very high ion recombination and deemed not suitable for absolute dosimetry at ultra-high dose rates. The average dose rate measured using the PPC05 ionization chamber was 163 Gy/s at the pristine Bragg peak and 126 Gy/s at 1 cm depth for the SOBP beam. The SOBP beam range and modulation were measured 24.4 mm and 19 mm, respectively. The pristine Bragg peak beam had 25.6 mm range. Simulation results showed that the IDD and profile flatness can be improved by the cavity diameter of the range modulator and the number of scanned spots, respectively. CONCLUSIONS: Feasibility of delivering protons in an SOBP pattern with >100 Gy/s average dose rate using a clinical synchrocyclotron was demonstrated. The dose heterogeneity can be improved through optimization of the range modulator and number of delivered spots. Plane-parallel chambers with smaller gap between electrodes are more suitable for FLASH dosimetry compared to the other ion chambers used in this work.


Assuntos
Terapia com Prótons , Prótons , Ciclotrons , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica
14.
J Radiol Prot ; 40(4): 980-996, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32964859

RESUMO

The goal of this study was to develop a Monte Carlo (MC)-based analytical model that can predict the in-room ambient dose equivalent from a Mevion gantry-mounted passively scattered proton system. The Mevion S250 and treatment vault were simulated using the MCNPX MC code. The results of the in-room neutron dose measurements, using an FHT 762 WENDI-II detector, were employed to benchmark the MC-derived values. After tuning the MCNPX MC code, for the same beam delivery parameters, the code was used to calculate the neutron spectra and ambient dose equivalent in the vault and at varying angles from the isocenter. Then, based on the calculations, an analytical model was reconstructed and data were fitted to derive the model parameters at 95% confidence intervals (CI). The MCNPX codes were tuned to within about 19% of the measured values for most of the measurements in the vault. For the maze, up to 0.08 mSv Gy-1 discrepancies were found between the experimental measurements and MCNPX calculated results. The analytical model showed up to 18% discrepancy for distances between 100 and 600 cm from the isocenter compared to the MC calculations. The model may underestimate the neutron ambient dose equivalent up to 21% for distances less than 100 cm from the isocenter. The proposed analytical model can be used to estimate the contribution of the secondary neutron dose from the Mevion S250 for the design of local shielding inside the proton therapy treatment vault.

15.
Med Phys ; 47(10): 5287-5300, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32750155

RESUMO

PURPOSE: To (a) characterize the fundamental optical and dosimetric properties of the storage phosphor europium-doped potassium chloride for quantitative proton dosimetry, and (b) investigate if its dose radiation response can be described by an analytic radiation transport model. METHODS: Cylindrical KCl:Eu2+ dosimeters with dimensions of 6 mm diameter and 1 mm thickness were fabricated in-house. The dosimeters were irradiated using both a Mevion S250 passive scattering proton therapy system and a Varian Clinac iX linear accelerator. Photostimulated luminescence (PSL) emission spectra, excitation spectra, and luminescence lifetimes were measured for both proton and photon irradiations. Dosimetric properties including radiation hardness, dose linearity, signal stabilization, dose rate sensitivity, and energy dependence were studied using a laboratory optical reader after irradiations. The dosimeters were modeled using physical quantities including mass stopping powers in the storage phosphor and water for a given proton beam, and mass energy absorption coefficients and massing stopping powers in detector and water for a given photon beam. RESULTS: KCl:Eu2+ exhibited optical emission and stimulation peaks at 421 and 560 nm, respectively, for both proton and photon irradiations, enabling postirradiation readouts using a visible light source while detecting the PSL using a photomultiplier tube. KCl:Eu2+ showed a linear response from 0 to 8 Gy absorbed dose-to-water, a large dynamic range up to 60 Gy, dose-rate independence measured from 83 to 500 MU/min, and a PSL lifetime of <5 ms that is sufficiently short for supporting rapid scanning in a two-dimensional geometry. KCl:Eu2+ was highly reusable with only a slight signal decrease of ~3% at accumulated doses over 100 Gy, which could be managed by a periodic recalibration. The detected PSL signal strength of the dosimeter in the proton field had been calculated accurately to a maximum discrepancy of 2% using known physical quantities along with its prior signal strength as measured in a photon field at the same dose-to-water. This discrepancy might be attributed to an under-response due to linear energy transfer (LET) effect. However, comparisons of depth-dose measurements in a spread-out Bragg peak (SOBP) field with a parallel-plate ionization chamber showed no clear evidence of LET effects. Furthermore, range measurements agreed with ionization chamber measurements to within 1 mm. CONCLUSIONS: KCl:Eu2+ showed linear response over a large dynamic range for proton irradiations and reliably reproduced SOBP measurements as measured by ionization chambers. Its relatively low atomic number of 18 and near LET independence make it suited for quantitative proton dosimetry. In addition, its high radiation hardness means that it can be reused numerous times. Any potential measurement artifacts encountered in complex irradiation conditions should be able to be corrected for using known physical quantities.


Assuntos
Európio , Terapia com Prótons , Cloreto de Potássio , Prótons , Radiometria
16.
Phys Med Biol ; 65(20): 205002, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32619997

RESUMO

The response of GafchromicTM EBT-XD films to proton irradiation using a Mevion S250TM proton therapy system is studied in this work. Film samples from different batches were irradiated with doses from 0.25 Gy to 20 Gy using a Mevion S250 spread-out Bragg peak (SOBP) clinical proton beam. Using a fiber-coupled optical spectrometer, transmission spectra of the films were acquired over 400-800 nm range (with 2.5 nm resolution). The optical density (OD) of the films was also measured with a flatbed scanner. The characteristics of the film were investigated for dependencies on dose, inter-batch, energy, linear energy transfer (LET), and radiation type. Post-irradiation temporal growth of the OD of the films was also investigated. The net absorbance spectra of EBT-XD films exhibited two absorption peaks located at 636 nm and 585 nm. The measurement of percentage depth dose with the films showed ∼1%-5% and 7%-8% under-estimation on the dose in mid-SOBP and distal SOBP regions, respectively, compared to ionization chamber measurement. No significant energy dependence was noted in the OD of the films when irradiated at the same dose using different proton energies. Approximately 4%-10% drop in spectral response was seen for the proton-irradiated films relative to the films irradiated in photon beams. Temporal growth of the optical density showed a different developing slope between photon and proton irradiation in the first 12 h, but both reached a stable response 24 h after irradiation.


Assuntos
Dosimetria Fotográfica/métodos , Fótons , Prótons , Transferência Linear de Energia , Doses de Radiação , Análise Espectral
17.
Radiother Oncol ; 148: 274-278, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474126

RESUMO

As the COVID-19 spread continues to challenge the societal and professional norms, radiotherapy around the globe is pushed into an unprecedented transformation. We will discuss how clinical physics has transformed to ascertain safety and quality standards across four facilities around the world through diversity of action, innovation, and scientific flexibility.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Radioterapia/métodos , COVID-19 , Humanos , Física , SARS-CoV-2
18.
Med Phys ; 47(9): 4543-4552, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32502280

RESUMO

PURPOSE: To investigate the inconsistency of recent literature on the effect of magnetic field on the response of radiochromic films, we studied the influence of 0.35 T magnetic field on dosimetric response of EBT3 and EBT-XD GafchromicTM films. METHODS: Two different models of radiochromic films, EBT3 and EBT-XD, were investigated. Pieces of films samples from two different batches for each model were irradiated at different dose levels ranging from 1 to 20 Gy using 6 MV flattening filter free (FFF) x-rays generated by a clinical MR-guided radiotherapy system (B = 0.35 T). Film samples from the same batch were irradiated at corresponding dose levels using 6 MV FFF beam from a conventional linac (B = 0) for comparison. The net optical density was measured 48 h postirradiation using a flatbed scanner. The absorbance spectra were also measured over 500-700 nm wavelength range using a fiber-coupled spectrometer with 2.5 nm resolution. To study the effect of fractionated dose delivery to EBT3 (/EBT-XD) films, 8 (/16) Gy dose was delivered in four 2 (/4) Gy fractions with 24 h interval between fractions. RESULTS: No significant difference was found in the net optical density and net absorbance of the films irradiated with or without the presence of magnetic field. No dependency on the orientation of the film during irradiation with respect to the magnetic field was observed. The fractionated dose delivery resulted in the same optical density as delivering the whole dose in a single fraction. CONCLUSIONS: The 0.35 T magnetic field employed in the ViewRay® MR-guided radiotherapy system did not show any significant influence on the response of EBT3 and EBT-XD GafchromicTM films.


Assuntos
Dosimetria Fotográfica , Aceleradores de Partículas , Calibragem , Campos Magnéticos , Doses de Radiação , Raios X
19.
Med Phys ; 47(9): 4509-4521, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32473612

RESUMO

PURPOSE: To calculate in- and out-of-field neutron spectra and dose equivalent, using Monte Carlo (MC) simulation, for a Mevion gantry-mounted passively scattered proton system in craniospinal irradiation. An analytical model based on the MC calculations that estimates in- and out-of-field neutron dose equivalent from proton Craniospinal irradiation (CSI) was also developed. METHODS: The MCNPX MC code was used to simulate a Mevion S250 proton therapy system. The simulated proton depth doses and profiles for pristine and spread-out Bragg peaks were benchmarked against the measured data. Previous measurements using extended-range Bonner spheres were used to verify the calculated neutron spectra and dose equivalent. Using the benchmarked results as a reference condition, a correction-based analytical model was reconstructed by fitting the data to derive model parameters at 95% confidence interval. Sensitivity analysis of brass aperture opening, thickness of the Lucite (PMMA) range compensator, and modulation width was performed to obtain correction parameters for nonreference conditions. RESULTS: For the neutron dose equivalent per therapeutic proton dose, the MCNPX calculated dose equivalent matched the measured values to within 8%. The benchmarked neutron dose equivalent at the isocenter was 41.2 and 20.8 mSv/Gy, for cranial and spinal fields, respectively. For in- and out-of-field neutron dose calculations, the correction-based analytical model showed up to 17% discrepancy compared to the MC calculations. The correction factors may provide a conservative estimation of neutron dose, especially for depth ≤ 5 cm and regions underneath the brass aperture. CONCLUSION: The proposed analytical model can be used to estimate the contribution of the neutron dose to the overall CSI treatment dose. Moreover, the model can be employed to estimate the neutron dose to the implantable cardiac electronic devices.


Assuntos
Radiação Cranioespinal , Terapia com Prótons , Método de Monte Carlo , Nêutrons , Prótons , Dosagem Radioterapêutica
20.
J Appl Clin Med Phys ; 21(7): 187-195, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32432389

RESUMO

PURPOSE: The COVID-19 pandemic has led to disorder in work and livelihood of a majority of the modern world. In this work, we review its major impacts on procedures and workflow of clinical physics tasks, and suggest alternate pathways to avoid major disruption or discontinuity of physics tasks in the context of small, medium, and large radiation oncology clinics. We also evaluate scalability of medical physics under the stress of "social distancing". METHODS: Three models of facilities characterized by the number of clinical physicists, daily patient throughput, and equipment were identified for this purpose. For identical objectives of continuity of clinical operations, with constraints such as social distancing and unavailability of staff due to system strain, however with the possibility of remote operations, the performance of these models was investigated. General clinical tasks requiring on-site personnel presence or otherwise were evaluated to determine the scalability of the three models at this point in the course of disease spread within their surroundings. RESULTS: The clinical physics tasks within three models could be divided into two categories. The former, which requires individual presence, include safety-sensitive radiation delivery, high dose per fraction treatments, brachytherapy procedures, fulfilling state and nuclear regulatory commission's requirements, etc. The latter, which can be handled through remote means, include dose planning, physics plan review and supervision of quality assurance, general troubleshooting, etc. CONCLUSION: At the current level of disease in the United States, all three models have sustained major system stress in continuing reduced operation. However, the small clinic model may not perform if either the current level of infections is maintained for long or staff becomes unavailable due to health issues. With abundance, and diversity of innovative resources, medium and large clinic models can sustain further for physics-related radiotherapy services.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Física Médica , Pandemias , Pneumonia Viral/epidemiologia , Radioterapia (Especialidade) , COVID-19 , Instalações de Saúde/normas , Pessoal de Saúde , Física Médica/organização & administração , Física Médica/normas , Humanos , Guias de Prática Clínica como Assunto/normas , Garantia da Qualidade dos Cuidados de Saúde , Radioterapia (Especialidade)/organização & administração , Radioterapia (Especialidade)/normas , SARS-CoV-2 , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...